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Abstract— This paper describes a tool that implements a set 

of services to manipulate and store data from a sensor 
network in a transparent way to end users. A major 
requirement of this system is data availability and reliability. 
Consequently, we have implemented a replication schema 
based on the Information Dispersal Algorithm (IDA). 
Preliminary results show that the IDA based replication 
provides better reliability and less storage spending than 
traditional replication. The storage scheme has been 
deployed on top of a Globus based infrastructure. 
 

Index Terms—Distributed storage, information dispersal, grid 
computing, service oriented architecture.  
 

I. INTRODUCTION 
HE Wide Area Large Scale Automated Information 
Processing (WALS-AIP) project, funded by the US 

National Science Foundation, aims at developing an 
infrastructure for the treatment of signal-based information 
arriving from physical sensors in a wide-area, large scale 
environment. The proposed model accentuates a distributed 
space-time processing format. This approach demands 
efficient data and resource management techniques.  
We have deployed the prototype of a grid-service based 
system to access and manipulate data from a sensor network: a 
grid portal interface provides transparent access to end-users; 
raw data from sensors are sent to a data server via wireless 
communication; GridFTP is used to improve data transport 
from the data server to a grid infrastructure; data exchange 
between server and the Grid testbed is authenticated using 
Grid Security Infrastructure (GSI); and finally a replication 
strategy based on the information dispersal algorithm (IDA) is 
incorporate into the tool to manage the distributed storage of 
the data.  

The information dispersal algorithm (IDA) [1] was 
proposed as a fault-tolerance technique to be used in secure 
and reliable storage systems. In the basic approach, a file F is 
striped into n blocks of size |F|/m, where |F| is the size of the 
file and m is the number of blocks required to recovery the file 
F.  A set of secret keys are used to disperse the file, providing 
confidentiality to the information. Since m ≤ n, the redundancy 
level given by (n/m-1)%, can be selected to be smaller than  
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replication technique.  The storage spending is |F|*(n/m). An 
important feature of this technique is that any m blocks will 
reconstruct the file and labels are not necessary for each block. 
Additionally IDA tolerates up to r failures, where r = n - m. 
Hence, IDA guarantees a higher availability. 

This paper is organized as follows. Section II describes in 
detail the implementation of the information dispersal 
algorithm. Section III presents experimental results. Section 
IV describes the implementation and deployment of the 
information dispersal service in a grid infrastructure. Finally, 
section V draws conclusions and future work. 

II. INFORMATION DISPERSAL 

When blocks have the independent probability of failure p, the 
access reliability is determined by: 
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Let F= b1, b2, b3,… be a file, where bi is an integer taken from 
a certain range [0 … (2B -1)]. If bi is two bytes long, as in the 
actual implementation, then 0 ≤ bi ≤ 65535. Let p be a prime 
number greater than bi. Each bi is an element of the finite field 
Zp where all arithmetic operations are done in mod p. Since p 
> (2B -1), this implies an excess of one bit per byte when 
integers greater than (2B -1) are obtained, this requires a 
storage space increment. In order to avoid the waste of space, 
all bi values are represented as polynomials with binary 
coefficients ( 01

)1(
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larger degree non-reducible polynomial p(x) instead the prime 
p [2]. The polynomial must suffice ( [ ]xZxp 2)( ∈ ) in such a 
way that all operations can be done in the finite field 
E=GF(2B). GF refers to the “Galois Field”. 

In order to disperse F, a set of n vectors 
E a ,  ,a ,a ,a n321 ∈… must be chosen, each of length m, 

such that every subset of m different vectors is linearly 
independent. These vectors are the keys that will be used to 
disperse every block of the file. 

Let Anxm be a matrix whose ith row is ai. The file is divided 
into sequences of length m (b1, b2, b3, …, bm) and the dispersal 
operation is achieved mapping each sequence bj into a new 
sequence of n elements using Anxm.  
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Each resulting element ci is stored in a separate block of 
file. In order to reconstruct the file, m blocks are required (s1, 
s2, s3, …, sm) and the recovery operation is performed as 
follows: let Bmxm be a matrix whose rows are (as1, as2, as3, …, 
asm). To recover the first m elements of F, the first element 
from each different block is needed. The whole file is obtained 
mapping sequences of m elements from each block into 
sequences of m elements using the inverse of Bmxm. 
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Note that the inverse of the Bmxm matrix is guaranteed since 

the rows of matrix A are mutually independent, which implies 
that any submatrix (in this case Bmxm) is not singular and thus 
invertible by deleting m rows of Anxm,.  

An Anxm matrix with the properties above mentioned is the 
Vandermonde matrix. The ith row of this matrix is defined as: 
 

13210 ,...,,,, −niiiii . 
 
By definition, this matrix has the property that any submatrix 
formed by deleting its m rows, is invertible. Additionally, any 
matrix derived from this matrix by a sequence of elementary 
matrix transformations, will maintain this property [3]. 

Finally, a non-reducible polynomial must be chosen. For the 
current implementation, the polynomial p(x) of degree B over 
GF(2B), when B = 16 is  
 

1)( 31216 ++++= xxxxxp . 
 

The implementation of the IDA involves several operations 
over finite fields. In this case over GF(216). IDA is 
implemented as follows: 
 

(1) Create the dispersal matrix A nxm which must obey 
the properties described above.  

 
(2) Divide the file F into sequences of m elements, where 

each element is 2 bytes of length. Note that |F| must 
be divisible by m, therefore, padding must be added. 
In order to disperse the file, each sequence is 
multiplied by the matrix A to obtain the new 
sequences. The first block will have the 1st element 
from the each new sequence. The second block will 
have the 2nd element from that sequence and so forth.  

 
(3) A unique tag for each block must be established 

before these are written as separate files. This tag 
corresponds to the ith row of matrix A. This tag is 
necessary to choose the correct B matrix recovery. 

 

(4) After the tagged files are ready, they must be 
distributed in n nodes or according to the established 
data distribution strategy. The two first bytes of each 
file are used to identify the correspondent row. Thus 
a maximum of 216 blocks are permitted. The 
complete path of these files will be registered in a log 
file. 

 
(5) In order to recover the file F, the existence of at least 

m blocks must be verified; this condition is necessary 
and will suffice in achieving the recovery operation. 
The two first bytes of each file are read to identify the 
row of the matrix A. The algorithm chooses the first 
m files and creates the recovery matrix B with the 
rows which were found. Then, the inverse of the B 
matrix is calculated. 

 
(6) Reconstruct the first sequence of m elements from the 

original file multiplying the matrix B-1 by the 
sequence formed by all the first elements from each 
file found. Similarly, the second sequence from the 
original file is obtained, thus transforming the 
sequence containing all of the second elements from 
each file and so forth. 

 
(7) Finally, padding must be removed, if necessary, to 

obtain the original size of the file. 

 
Figure 1 shows an example of the IDA behavior when n = 

12 and m = 4.   
 

 
Figure 1: Replication example with n = 12 and m = 4.  

 

III. EXPERIMENTAL RESULTS 

For our performance analysis we consider the total number 
of blocks after applying redundancy (TB), the size of each 
block (BS) and the added redundancy (AR) as parameters and 
measure the access reliability (R). In each case the storage 
spending (SS) required to perform redundancy. 
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Figure 2: Standard Replication and IDA 

 
Information dispersal algorithm shows a better access 
reliability than the simple replication algorithm as shown in 
Figure 2. As a reference point, for an access reliability R = 0.9 
when the probability of failure is p = 0.4 and m = 8, the added 
redundancy for IDA is AR = 120 %, while in the replication 
approach the added redundancy must be approximately AR ≈ 
300 %. Note that, for replication algorithm, AR increment is 
every 100%, because the redundancy is performed using 
multiplication with integer numbers.  

The reliability for IDA is improved when m is incremented 
compensating a higher probability of failure. However, the 
reliability for replication is downgraded if the number of 
blocks is incremented and is even worse if p is higher.  In 
contrast, a higher number m involves an even higher number 
of total blocks (TB) and a reduction in the block size (BS). A 
small BS can be desirable to obtain weightless blocks to send 
them over a loaded network. In turn a higher TB involves a 
higher number of nodes, if the node-block relationship is 1:1. 
Redundancy is an important feature to be taking into account 
when sensor data must be manipulated, because the size of this 
data is usually large. Therefore, a proper redundancy must be 
selected to avoid storage overhead.  

Experiments involving time measurements vs. data size, 
take as reference data size from National Climatic Data 
Center. This data is a Level II base data [4], available in 
compressed tape archive format. It contains data per day from 
specific NEXRAD Level II radar. The compressed data for a 
day is about 150 MB, while uncompressed is about 2.3GB. 
Note that this is the data mount for 24 hours of continuous 
scan. For rain fall measurements and precipitation estimation, 
the primary implementation of DCAS network requires less 
than 8 hours of continuous scan.  Considering all the exposed 
before and the limited transmission due to wireless 
communication as mentioned, testing is achieved with data 
size range from 100MB to 1GB. 

Different memory management strategies for the IDA have 
been studied to reduce execution time (Figure 3). We have 
been able to reduce significantly the operation time of the IDA 
approach. In addition the new IDA based implementation of 
replication supports large amount of data as required in a radar 
network   
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Figure 3: IDA Operation and Time Reduction 

 
 
Note that, 8FRL is the enhanced version of IDA-OLD. They 

show a similar behavior with data size < 800 MB, but the main 
difference occurs at 900 MB and 1000 MB where the elapsed 
time is reduced ~2 min and ~2.5 min respectively.  Techniques 
using memory allocation present a good response, even better 
than FRL techniques. However, MMA produces an 
unacceptable time of computation. Memory mapping 
technique allows processing data size larger than 800 MB 
without time reduction. MAP presents the better performance 
than MMA and FRL, with data sizes smaller than 500 MB. 
The most representative reduction was obtained with the FRL 
technique. However, this reduction is not enough and some 
modifications are required. Techniques to improve the IDA 
execution time can be enhanced using pre-computed look-up 
tables instead of dynamically generated tables. Figure 4 shows 
the results after performing such modifications. 
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Figure 4: IDA with pre-computed tables 

 
The behavior of the different techniques is similar to the 

results shown in Figure 3. However, a significant reduction of 
time is obtained. Again, the most significant reduction was 
obtained with the FRL technique when the bit string is 2 bytes 
of length. For example, the introduction of pre-computed 
tables allows a reduction of 7 minutes in the dispersal 
operation for a 1000 MB file. 

An additional set of IDA experiments was performed for 
data sizes between 10MB and 100 MB, as well as data sizes 
lower than 10 MB.  
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IDA - Dispersal Operation
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Figure 5: Data Size vs. Elapsed Time (10 to 100 MB) 

As shown in Figure 5, MAP and MMA techniques have a 
very similar behavior. This occurs because, with small files, 
copy or mapping operations use the same system resources. 
In general the 16 bits FRL offers better results than the other 
techniques, when data files are > 500MB. The MMA 
technique can be used for files <500 MB instead of MAP, 
because MMA does not affect the code portability and it can 
be implemented in different platforms. 
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Figure 6: IDA vs Reed-Solomon comparison 

 
Finally, we present a comparison between the implemented 

IDA and the Reed-Solomon (RS) algorithm. RS has similar 
properties as IDA and it also requires operations over GF. As 
shown in Figure 6 Reed-Solomon presents a better response in 
terms of execution time with files < 800MB. However, RS 
algorithm does not support large data files.  

A more general experiment was performed, using 4 nodes 
from the grid and a set of files from 1 to 10. The results show 
that the execution over the grid (for multiple files) takes 
approximately 2 times more than an execution on the server. 
This approximation remains true, even if when the amount of 
files to be processed is increased. 

1 2 3 4 5 6 7 8 9 10

17.31
20.25

22.56
26.29

31.75

37.51

44.73
50.69

54.09

65.6

2.85 6.21
9.95

13.69
16.4

19.83
23.31

27.71
31.18

34.28

0

10

20

30

40

50

60

70

Ti
m

e 
(s

ec
)

Netcdf to JPG - Elapsed Time

Server Grid  

1 2 3 4 5 6 7 8 9 10

98 98 98 97 98 97 97 94 93 93

2 2 1 1 1 1 1 0 0 00

10

20

30

40

50

60

70

80

90

100

C
PU

 U
sa

ge
 (%

)

Netcdf to JPG - CPU Usage

Grid Server  
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Time, b) Percentage of CPU usage. 
 

For example, in Figure 7(a) the time elapsed for five (5) 
files processed over the grid is ≈ two times slower than a 
single job executed on the server. Further studies show that a 
similar result is obtained when the required files are equal 8, 9, 
or 10. However, the CPU consumption (Figure 7(b)) is very 
quite high (≈ 97%) when a local job is executed, and is close 
to 1%, when a remote job is performed. In an attempt to 
reduce of the elapsed time for the multijob on the grid, 
limiting factors must be taken into account. First, the total 
execution time is limited by the number of the nodes available 
in the grid. Second, the stage-in and stage-out procedures 
required to perform multi-jobs on the grid, due to the fact that, 
in these procedures, the input file is sent from the STB server 
to the node selected by the scheduler, and the output file is 
sent back from the node to the server. This communication 
time cannot be modified and depends of the amount of traffic 
and the load of the network. 

In general, a local job can be submitted when the designated 
process involves a single execution (i.e. a single file).  
However, running the process on the grid is quite useful when 
the submitted task requires multiple or repetitive executions 
(i.e. processing of a data set) where a lower CPU usage is 
required.   
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IV. SERVICE DEPLOYMENT 

The IDA based replication strategy has been deployed as a 
composite service on top of the Globus toolkit following the 
WSRF specification. The components of the IDA service 
include a service to select the adequate places to store the file 
pieces (adapter service) and a service to split and recover files 
(IDA based service). Each service is an independent functional 
entity so it can be re-used on other service deployment. In our 
deployment GridFTP is used to transfer files among resources, 
and GSI (Globus Security Infrastructure) services are used to 
certificate management and authentication.  

GridFTP is a secure, high-performance and robust data 
transfer mechanism used to access remote data. In addition to 
GridFTP, Globus provides Globus Replica Catalog to 
maintain a catalog of dataset replicas so that, instead of 
duplicating large datasets, only necessary pieces of the 
datasets are stored on local hosts. The Globus Replica 
Management software provides the replica management 
capabilities for data grid by integrating the replica catalog and 
GridFTP. 

The Grid Security Infrastructure is used by the Globus 
Toolkit for authentication and secure communication. GSI is 
implemented using public key encryption, X.509 certificates, 
and the secure sockets layer (SSL) communication protocol 
and incorporates single sign-on and delegation. 

GKrellM, a third party monitor tool, is used to monitor and 
collect data related to memory and disk space in resources. 
The adapter service takes into consideration information 
related to both disk space and GridFTP service availability on 
specific resources to determine the number of file chunks and 
places to store pieces of files. The IDA-based service then 
implements the partition and store of the pieces of files. Figure 
8 illustrates the interaction among the different services.  

The deployment of the services has been tested on the 
PDCLab Grid Testbed, deployed at the University of Puerto 
Rico-Mayaguez. This testbed is an experimental grid designed 
to address research issues, such as the effective integration of 
sensor and radar networks into grid infrastructures. The 
PDClab grid test-bed components run CentOS 4.2 and the 
Globus Toolkit 4.0.1. The computational resources available 
on the grid include an IBM xSeries Linux cluster with 64 
nodes, dualprocessor at 1.2GHz, 53GB of memory and 1TB of 
storage; Eight (8) IA-64 Itanium servers, dual processor at 900 
MHz, each with 8GB of memory and 140GB of SCSI Ultra 
320 storage; Two (2) IA-32 Pentium IV servers, dual 
processor at 3 GHz, each with 1GB of memory and 120GB of 
ATA-100 storage; One (1) IA-32 Pentium III server, dual 
processor at 1.2 GHz with 2GB of memory and 140Gb of 
SCSI Ultra 160 storage; One (1) IA-32 Xeon server, dual 
processor at 2.8 GHz, L2 Cache 1MB with 1GB of memory 
and one 230 GB RAID of storage (STB Server); and two (2) 
PowerVault storage with 8TB. 

 
 

 
Figure 8: IDA Service Deployment Schema  

 

V. CONCLUSIONS AND FUTURE WORK 

A replication schema based on the Information Dispersal 
Algorithm (IDA) has been presented in this paper. It was 
shown that the proposed redundancy scheme and its 
subsequent deployment as a grid service improve reliability in 
distributed storage.  

The work in this paper is considered as a initial proof of 
concept for a more complex project related to the design and 
implementation of adaptive resource allocation and migration. 
In the proposed service oriented architecture, several instances 
of adapters are allowed to deal with local administrative 
domain management. Consequently, the adapter module will 
implement mechanisms to monitor and react to local 
conditions via active/reactive services. We are working on 
developing new adaptive resource allocation mechanisms 
using the functionalities of both the adapter module, partially 
described in this paper, and active/reactive services.  

REFERENCES 
[1] Rabin, M. O., “Efficient dispersal of information for 

security, load balancing, and fault tolerance”, Journal 
ACM. 36, 2 (Apr. 1989), 335-348. 

[2] Bestavros, A., “SETH: A VLSI chip for the real-time 
information dispersal and retrieval for security and fault-
tolerance”, In Proceedings of ICPP'90, The 1990 
International Conference on Parallel Processing, 
Chicago, Illinois, August 1990. 

[3] Plank, J. S., “A tutorial on Reed-Solomon coding for 
fault-tolerance in RAID-like systems”, Software-Practice 
and Experience (SPE), 27(9):995.1012, Sept. 1997. 
Correction in James S. Plank and Ying Ding, Technical 
Report UT-CS-03-504, U. Tennessee, 2003. 

[4] National Climatic Data Center, “Data documentation for 
DSI-6500 NEXRAD Level II”, National Climatic Data 
Center, Asheville N.C., April 11, 2005 

 




