
 1

Abstract— This paper describes a tool that implements a set

of services to manipulate and store data from a sensor
network in a transparent way to end users. A major
requirement of this system is data availability and reliability.
Consequently, we have implemented a replication schema
based on the Information Dispersal Algorithm (IDA).
Preliminary results show that the IDA based replication
provides better reliability and less storage spending than
traditional replication. The storage scheme has been
deployed on top of a Globus based infrastructure.

Index Terms—Distributed storage, information dispersal, grid
computing, service oriented architecture.

I. INTRODUCTION
HE Wide Area Large Scale Automated Information
Processing (WALS-AIP) project, funded by the US

National Science Foundation, aims at developing an
infrastructure for the treatment of signal-based information
arriving from physical sensors in a wide-area, large scale
environment. The proposed model accentuates a distributed
space-time processing format. This approach demands
efficient data and resource management techniques.
We have deployed the prototype of a grid-service based
system to access and manipulate data from a sensor network: a
grid portal interface provides transparent access to end-users;
raw data from sensors are sent to a data server via wireless
communication; GridFTP is used to improve data transport
from the data server to a grid infrastructure; data exchange
between server and the Grid testbed is authenticated using
Grid Security Infrastructure (GSI); and finally a replication
strategy based on the information dispersal algorithm (IDA) is
incorporate into the tool to manage the distributed storage of
the data.

The information dispersal algorithm (IDA) [1] was
proposed as a fault-tolerance technique to be used in secure
and reliable storage systems. In the basic approach, a file F is
striped into n blocks of size |F|/m, where |F| is the size of the
file and m is the number of blocks required to recovery the file
F. A set of secret keys are used to disperse the file, providing
confidentiality to the information. Since m ≤ n, the redundancy
level given by (n/m-1)%, can be selected to be smaller than

This material is based upon work supported by the US National Science
Foundation under Grants No 0313747 and No 0424546.

replication technique. The storage spending is |F|*(n/m). An
important feature of this technique is that any m blocks will
reconstruct the file and labels are not necessary for each block.
Additionally IDA tolerates up to r failures, where r = n - m.
Hence, IDA guarantees a higher availability.

This paper is organized as follows. Section II describes in
detail the implementation of the information dispersal
algorithm. Section III presents experimental results. Section
IV describes the implementation and deployment of the
information dispersal service in a grid infrastructure. Finally,
section V draws conclusions and future work.

II. INFORMATION DISPERSAL

When blocks have the independent probability of failure p, the
access reliability is determined by:

() () ini
mn

i
pp

i
n

ap −
−

=
−

= ∑ 1

0

.

Let F= b1, b2, b3,… be a file, where bi is an integer taken from
a certain range [0 … (2B -1)]. If bi is two bytes long, as in the
actual implementation, then 0 ≤ bi ≤ 65535. Let p be a prime
number greater than bi. Each bi is an element of the finite field
Zp where all arithmetic operations are done in mod p. Since p
> (2B -1), this implies an excess of one bit per byte when
integers greater than (2B -1) are obtained, this requires a
storage space increment. In order to avoid the waste of space,
all bi values are represented as polynomials with binary
coefficients (01

)1(
)1(... bxbxbxb B

B
B

B ++++ −
−) and use a

larger degree non-reducible polynomial p(x) instead the prime
p [2]. The polynomial must suffice ([]xZxp 2)(∈) in such a
way that all operations can be done in the finite field
E=GF(2B). GF refers to the “Galois Field”.

In order to disperse F, a set of n vectors
E a , ,a ,a ,a n321 ∈… must be chosen, each of length m,

such that every subset of m different vectors is linearly
independent. These vectors are the keys that will be used to
disperse every block of the file.

Let Anxm be a matrix whose ith row is ai. The file is divided
into sequences of length m (b1, b2, b3, …, bm) and the dispersal
operation is achieved mapping each sequence bj into a new
sequence of n elements using Anxm.

Grid Based Pervasive Distributed Storage
Diego Arias, John Sanabria, and Wilson Rivera
Parallel and Distributed Computing Laboratory

University of Puerto Rico at Mayaguez
{diego.arias, john.sanabria, wrivera}@ee.uprm.edu

T

1-4244-0523-8/07/$20.00 ©2007 IEEE

 2

=

⋅

nm

nxm

c

c

b

b
A

11

Each resulting element ci is stored in a separate block of
file. In order to reconstruct the file, m blocks are required (s1,
s2, s3, …, sm) and the recovery operation is performed as
follows: let Bmxm be a matrix whose rows are (as1, as2, as3, …,
asm). To recover the first m elements of F, the first element
from each different block is needed. The whole file is obtained
mapping sequences of m elements from each block into
sequences of m elements using the inverse of Bmxm.

=

⋅−

nm

mxm

b

b

c

c
B

11
1

Note that the inverse of the Bmxm matrix is guaranteed since

the rows of matrix A are mutually independent, which implies
that any submatrix (in this case Bmxm) is not singular and thus
invertible by deleting m rows of Anxm,.

An Anxm matrix with the properties above mentioned is the
Vandermonde matrix. The ith row of this matrix is defined as:

13210 ,...,,,, −niiiii .

By definition, this matrix has the property that any submatrix
formed by deleting its m rows, is invertible. Additionally, any
matrix derived from this matrix by a sequence of elementary
matrix transformations, will maintain this property [3].

Finally, a non-reducible polynomial must be chosen. For the
current implementation, the polynomial p(x) of degree B over
GF(2B), when B = 16 is

1)(31216 ++++= xxxxxp .

The implementation of the IDA involves several operations
over finite fields. In this case over GF(216). IDA is
implemented as follows:

(1) Create the dispersal matrix A nxm which must obey
the properties described above.

(2) Divide the file F into sequences of m elements, where

each element is 2 bytes of length. Note that |F| must
be divisible by m, therefore, padding must be added.
In order to disperse the file, each sequence is
multiplied by the matrix A to obtain the new
sequences. The first block will have the 1st element
from the each new sequence. The second block will
have the 2nd element from that sequence and so forth.

(3) A unique tag for each block must be established

before these are written as separate files. This tag
corresponds to the ith row of matrix A. This tag is
necessary to choose the correct B matrix recovery.

(4) After the tagged files are ready, they must be
distributed in n nodes or according to the established
data distribution strategy. The two first bytes of each
file are used to identify the correspondent row. Thus
a maximum of 216 blocks are permitted. The
complete path of these files will be registered in a log
file.

(5) In order to recover the file F, the existence of at least

m blocks must be verified; this condition is necessary
and will suffice in achieving the recovery operation.
The two first bytes of each file are read to identify the
row of the matrix A. The algorithm chooses the first
m files and creates the recovery matrix B with the
rows which were found. Then, the inverse of the B
matrix is calculated.

(6) Reconstruct the first sequence of m elements from the

original file multiplying the matrix B-1 by the
sequence formed by all the first elements from each
file found. Similarly, the second sequence from the
original file is obtained, thus transforming the
sequence containing all of the second elements from
each file and so forth.

(7) Finally, padding must be removed, if necessary, to

obtain the original size of the file.

Figure 1 shows an example of the IDA behavior when n =

12 and m = 4.

Figure 1: Replication example with n = 12 and m = 4.

III. EXPERIMENTAL RESULTS

For our performance analysis we consider the total number
of blocks after applying redundancy (TB), the size of each
block (BS) and the added redundancy (AR) as parameters and
measure the access reliability (R). In each case the storage
spending (SS) required to perform redundancy.

 3

Figure 2: Standard Replication and IDA

Information dispersal algorithm shows a better access
reliability than the simple replication algorithm as shown in
Figure 2. As a reference point, for an access reliability R = 0.9
when the probability of failure is p = 0.4 and m = 8, the added
redundancy for IDA is AR = 120 %, while in the replication
approach the added redundancy must be approximately AR ≈
300 %. Note that, for replication algorithm, AR increment is
every 100%, because the redundancy is performed using
multiplication with integer numbers.

The reliability for IDA is improved when m is incremented
compensating a higher probability of failure. However, the
reliability for replication is downgraded if the number of
blocks is incremented and is even worse if p is higher. In
contrast, a higher number m involves an even higher number
of total blocks (TB) and a reduction in the block size (BS). A
small BS can be desirable to obtain weightless blocks to send
them over a loaded network. In turn a higher TB involves a
higher number of nodes, if the node-block relationship is 1:1.
Redundancy is an important feature to be taking into account
when sensor data must be manipulated, because the size of this
data is usually large. Therefore, a proper redundancy must be
selected to avoid storage overhead.

Experiments involving time measurements vs. data size,
take as reference data size from National Climatic Data
Center. This data is a Level II base data [4], available in
compressed tape archive format. It contains data per day from
specific NEXRAD Level II radar. The compressed data for a
day is about 150 MB, while uncompressed is about 2.3GB.
Note that this is the data mount for 24 hours of continuous
scan. For rain fall measurements and precipitation estimation,
the primary implementation of DCAS network requires less
than 8 hours of continuous scan. Considering all the exposed
before and the limited transmission due to wireless
communication as mentioned, testing is achieved with data
size range from 100MB to 1GB.

Different memory management strategies for the IDA have
been studied to reduce execution time (Figure 3). We have
been able to reduce significantly the operation time of the IDA
approach. In addition the new IDA based implementation of
replication supports large amount of data as required in a radar
network

IDA - Dispersal Operation

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

0 100 200 300 400 500 600 700 800 900 1000

Data Size (MB)

El
ap

se
d

Ti
m

e
(S

ec
) 8FR

8MA
8MAP
16FR
16MA
16MAP
IDA-OLD

Figure 3: IDA Operation and Time Reduction

Note that, 8FRL is the enhanced version of IDA-OLD. They

show a similar behavior with data size < 800 MB, but the main
difference occurs at 900 MB and 1000 MB where the elapsed
time is reduced ~2 min and ~2.5 min respectively. Techniques
using memory allocation present a good response, even better
than FRL techniques. However, MMA produces an
unacceptable time of computation. Memory mapping
technique allows processing data size larger than 800 MB
without time reduction. MAP presents the better performance
than MMA and FRL, with data sizes smaller than 500 MB.
The most representative reduction was obtained with the FRL
technique. However, this reduction is not enough and some
modifications are required. Techniques to improve the IDA
execution time can be enhanced using pre-computed look-up
tables instead of dynamically generated tables. Figure 4 shows
the results after performing such modifications.

IDA - Dispersal Operation

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000

Data Size (MB)

E
la

ps
ed

 T
im

e
(S

ec
)

8MMA
8MAP
8FRL
16MMA
16MAP
16FRL

Figure 4: IDA with pre-computed tables

The behavior of the different techniques is similar to the

results shown in Figure 3. However, a significant reduction of
time is obtained. Again, the most significant reduction was
obtained with the FRL technique when the bit string is 2 bytes
of length. For example, the introduction of pre-computed
tables allows a reduction of 7 minutes in the dispersal
operation for a 1000 MB file.

An additional set of IDA experiments was performed for
data sizes between 10MB and 100 MB, as well as data sizes
lower than 10 MB.

 4

IDA - Dispersal Operation

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100

Data Size (MB)

El
ap

se
d

Ti
m

e
(S

ec
)

8MMA
8MAP
8FRL
16MMA
16MAP
16FRL

Figure 5: Data Size vs. Elapsed Time (10 to 100 MB)

As shown in Figure 5, MAP and MMA techniques have a
very similar behavior. This occurs because, with small files,
copy or mapping operations use the same system resources.
In general the 16 bits FRL offers better results than the other
techniques, when data files are > 500MB. The MMA
technique can be used for files <500 MB instead of MAP,
because MMA does not affect the code portability and it can
be implemented in different platforms.

IDA vs Reed-Solomon - Dispersal Operation

0

200

400

600

800

1000

1200

1400

1600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Data Size (GB)

El
ap

se
d

Ti
m

e
(S

ec
)

IDA
RS

Figure 6: IDA vs Reed-Solomon comparison

Finally, we present a comparison between the implemented

IDA and the Reed-Solomon (RS) algorithm. RS has similar
properties as IDA and it also requires operations over GF. As
shown in Figure 6 Reed-Solomon presents a better response in
terms of execution time with files < 800MB. However, RS
algorithm does not support large data files.

A more general experiment was performed, using 4 nodes
from the grid and a set of files from 1 to 10. The results show
that the execution over the grid (for multiple files) takes
approximately 2 times more than an execution on the server.
This approximation remains true, even if when the amount of
files to be processed is increased.

1 2 3 4 5 6 7 8 9 10

17.31
20.25

22.56
26.29

31.75

37.51

44.73
50.69

54.09

65.6

2.85 6.21
9.95

13.69
16.4

19.83
23.31

27.71
31.18

34.28

0

10

20

30

40

50

60

70

Ti
m

e
(s

ec
)

Netcdf to JPG - Elapsed Time

Server Grid

1 2 3 4 5 6 7 8 9 10

98 98 98 97 98 97 97 94 93 93

2 2 1 1 1 1 1 0 0 00

10

20

30

40

50

60

70

80

90

100

C
PU

 U
sa

ge
 (%

)

Netcdf to JPG - CPU Usage

Grid Server
Figure 7: Resources used for NCtoJPG process. a) Elapsed

Time, b) Percentage of CPU usage.

For example, in Figure 7(a) the time elapsed for five (5)
files processed over the grid is ≈ two times slower than a
single job executed on the server. Further studies show that a
similar result is obtained when the required files are equal 8, 9,
or 10. However, the CPU consumption (Figure 7(b)) is very
quite high (≈ 97%) when a local job is executed, and is close
to 1%, when a remote job is performed. In an attempt to
reduce of the elapsed time for the multijob on the grid,
limiting factors must be taken into account. First, the total
execution time is limited by the number of the nodes available
in the grid. Second, the stage-in and stage-out procedures
required to perform multi-jobs on the grid, due to the fact that,
in these procedures, the input file is sent from the STB server
to the node selected by the scheduler, and the output file is
sent back from the node to the server. This communication
time cannot be modified and depends of the amount of traffic
and the load of the network.

In general, a local job can be submitted when the designated
process involves a single execution (i.e. a single file).
However, running the process on the grid is quite useful when
the submitted task requires multiple or repetitive executions
(i.e. processing of a data set) where a lower CPU usage is
required.

 5

IV. SERVICE DEPLOYMENT

The IDA based replication strategy has been deployed as a
composite service on top of the Globus toolkit following the
WSRF specification. The components of the IDA service
include a service to select the adequate places to store the file
pieces (adapter service) and a service to split and recover files
(IDA based service). Each service is an independent functional
entity so it can be re-used on other service deployment. In our
deployment GridFTP is used to transfer files among resources,
and GSI (Globus Security Infrastructure) services are used to
certificate management and authentication.

GridFTP is a secure, high-performance and robust data
transfer mechanism used to access remote data. In addition to
GridFTP, Globus provides Globus Replica Catalog to
maintain a catalog of dataset replicas so that, instead of
duplicating large datasets, only necessary pieces of the
datasets are stored on local hosts. The Globus Replica
Management software provides the replica management
capabilities for data grid by integrating the replica catalog and
GridFTP.

The Grid Security Infrastructure is used by the Globus
Toolkit for authentication and secure communication. GSI is
implemented using public key encryption, X.509 certificates,
and the secure sockets layer (SSL) communication protocol
and incorporates single sign-on and delegation.

GKrellM, a third party monitor tool, is used to monitor and
collect data related to memory and disk space in resources.
The adapter service takes into consideration information
related to both disk space and GridFTP service availability on
specific resources to determine the number of file chunks and
places to store pieces of files. The IDA-based service then
implements the partition and store of the pieces of files. Figure
8 illustrates the interaction among the different services.

The deployment of the services has been tested on the
PDCLab Grid Testbed, deployed at the University of Puerto
Rico-Mayaguez. This testbed is an experimental grid designed
to address research issues, such as the effective integration of
sensor and radar networks into grid infrastructures. The
PDClab grid test-bed components run CentOS 4.2 and the
Globus Toolkit 4.0.1. The computational resources available
on the grid include an IBM xSeries Linux cluster with 64
nodes, dualprocessor at 1.2GHz, 53GB of memory and 1TB of
storage; Eight (8) IA-64 Itanium servers, dual processor at 900
MHz, each with 8GB of memory and 140GB of SCSI Ultra
320 storage; Two (2) IA-32 Pentium IV servers, dual
processor at 3 GHz, each with 1GB of memory and 120GB of
ATA-100 storage; One (1) IA-32 Pentium III server, dual
processor at 1.2 GHz with 2GB of memory and 140Gb of
SCSI Ultra 160 storage; One (1) IA-32 Xeon server, dual
processor at 2.8 GHz, L2 Cache 1MB with 1GB of memory
and one 230 GB RAID of storage (STB Server); and two (2)
PowerVault storage with 8TB.

Figure 8: IDA Service Deployment Schema

V. CONCLUSIONS AND FUTURE WORK

A replication schema based on the Information Dispersal
Algorithm (IDA) has been presented in this paper. It was
shown that the proposed redundancy scheme and its
subsequent deployment as a grid service improve reliability in
distributed storage.

The work in this paper is considered as a initial proof of
concept for a more complex project related to the design and
implementation of adaptive resource allocation and migration.
In the proposed service oriented architecture, several instances
of adapters are allowed to deal with local administrative
domain management. Consequently, the adapter module will
implement mechanisms to monitor and react to local
conditions via active/reactive services. We are working on
developing new adaptive resource allocation mechanisms
using the functionalities of both the adapter module, partially
described in this paper, and active/reactive services.

REFERENCES
[1] Rabin, M. O., “Efficient dispersal of information for

security, load balancing, and fault tolerance”, Journal
ACM. 36, 2 (Apr. 1989), 335-348.

[2] Bestavros, A., “SETH: A VLSI chip for the real-time
information dispersal and retrieval for security and fault-
tolerance”, In Proceedings of ICPP'90, The 1990
International Conference on Parallel Processing,
Chicago, Illinois, August 1990.

[3] Plank, J. S., “A tutorial on Reed-Solomon coding for
fault-tolerance in RAID-like systems”, Software-Practice
and Experience (SPE), 27(9):995.1012, Sept. 1997.
Correction in James S. Plank and Ying Ding, Technical
Report UT-CS-03-504, U. Tennessee, 2003.

[4] National Climatic Data Center, “Data documentation for
DSI-6500 NEXRAD Level II”, National Climatic Data
Center, Asheville N.C., April 11, 2005

