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Abstract  

This paper describes the implementation of a semi-analytical 
inversion model within a parallel processing framework. The 
greater processing speed obtained with this parallel 
implementation is demonstrated. A reduction of 97% in the 
execution time is achieved. This approach enables real time 
processing capabilities and more complex analysis to 
simultaneously classify water properties, bathymetry and 
benthic composition associated with coral reefs and other 
shallow costal subsurface environments.  

I. INTRODUCTION  
Remote sensing is increasingly being employed as a 

significant component in the evaluation and management of 
coral ecosystems. Advantages of this technology include 
both the qualitative benefits derived from a visual overview, 
and more importantly, the quantitative abilities for 
systematic assessment and monitoring. Much of the past 
work on remote sensing of coral reefs has focused on the 
use of more traditional multispectral sensors, which collect 
information from a few discrete non-contiguous portions of 
the electromagnetic spectrum. However, hyperspectral 
sensors, which collect information from numerous 
contiguous portions of the spectrum, are emerging as a more 
complete solution for subsurface shallow aquatic remote 
sensing. In contrast with multispectral sensors, 
hyperspectral instruments provide much greater spectral 
detail, and thus an improved ability to extract multiple 
layers of information from a spectrally complex 
environment associated with coral reefs and other shallow 
costal subsurface environments. By leveraging this spectral 
advantage, one of the first successful applications to 
simultaneously classify water properties, bathymetry and 
benthic composition using hyperspectral remote sensing was 
previously demonstrated using AVIRIS imagery from 
Hawaii [1]. At the core of this approach was the application 
of a semi-analytical inversion model for simultaneously 
extracting bathymetry and water property parameters.  

 
Hyperspectral imaging analysis as described above 

demands large input data sets and requires significant CPU 
time and memory capacity [2]. For the particular inversion 
model under discussion, there is a very straightforward 
parallelization in the spatial domain. Nevertheless, the 
resulting reduction of elapsed computing time will provide 
an opportunity for assessing real time processing 
capabilities and more complex analysis. Another approach 
is to improve efficiency by means of parallel computations 
inside the inversion model. This latter approach makes it 
necessary to develop or modify the corresponding 
optimization methods.  
 

In this paper we discuss the implementation of the semi-
analytical inversion model within a parallel processing 
framework. The greater processing speed obtained with this 
parallel implementation is demonstrated. This approach 
provides both the foundation for assessing real-time 
processing capabilities as well as the computation power 
necessary for addressing complex optimization and 
sensitivity questions. This paper is organized as follows. 
Section II discusses the semi-analytical inversion model. 
Section III describes the technical details of the 
implementation. Section IV presents the experimental 
results. Finally, conclusions and discussion about future 
work is provided in section V.  

 

II. SEMI-ANALYTICAL INVERSION MODEL 
The semi-analytical inversion model employs a non-

linear optimization routine to retrieve estimates of 
bathymetry and water properties from measured surface 
remote sensing reflectance data. The algorithm is based on 
quasi-single-scattering theory, and was developed utilizing 
Hydrolight (Sequoia Scientific Inc.) simulations to populate 
parameters of the semi-analytical model [3]. The model is 
summarized here in Table I following the parameter 
definitions in Table II. The model operates in the spectral 



domain and is thus independently applied to each pixel in an 
image. It requires no specific a priori knowledge of the 
study area and provides the following output for every pixel 
in the image: P, the phytoplankton absorption coefficient at 
440 nm; G, the absorption coefficient for gelbstoff and 
detritus at 440 nm; BP, a variable representing the combined 
influences from the particle-backscattering coefficient, 
view-angle, and sea state; B, the bottom albedo at 550 nm; 
and H, the water depth. Using a set of initial estimates for P, 
G, BP, B and H, the optimization procedure operates to 
minimize an error function such that the model estimated 
remote sensing reflectance from 400-800 nm (calculated 
from equations in Table I) most closely matches the 
measured surface remote sensing reflectance. The resulting 
set of parameter values then provide an indication of the 
bathymetry and water properties at the location of every 
pixel. 
 
    As test data for implementing the model and evaluating 
performance, we utilize existing synthetic hyperspectral data 
generated using Hydrolight as well as actual measured 
hyperspectral data from already acquired AVIRIS imagery 
of Puerto Rico and Hawaii [4]. Hydrolight is a physically 
explicit radioactive transfer numerical model that can be 
used to generate estimated surface reflectance data for a 
given set of water optical properties and water depth. 
AVIRIS, which is operated by NASA’s Jet Propulsion 
Laboratory, measures 224 contiguous spectral bands from 
370-2500 nm at a spectral resolution of 10 nm.  
 

TABLE 1.  INVERSION MODEL EQUATIONS 
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TABLE II. PARAMETER DESCRIPTION AND UNITS. 

Parameter Description 
a Absorption coefficient, total 
aφ Absorption coefficient of phytoplankton 

pigments 
ag Absorption coefficient of gelbstoff and 

detritus 
aw Absorption coefficient of pure seawater 

A0,a1 Empirically derived coefficients 
bb Backscattering coefficient, total 
bbp Backscattering coefficient of suspended 

particles 
bbw Backscattering coefficient of pure 

seawater 
B Bottom reflectance at 550 nm 

BP Combined coefficient for particle-
backscattering, view angle and sea state 

Du
B Distribution function for scattered photons 

from the bottom 
Du

C Distribution function for scattered photons 
from the water 

G Absorption coefficient for gelbstoff and 
detritus at 440 nm 

H Water depth 
κ Attenuation coefficient 
λ Wavelength 
ρ Bottom reflectance (albedo) 
P Phytoplankton absorption coefficient at 

440 nm 
rrs Subsurface remote sensing reflectance 

rrs
dp Subsurface remote sensing reflectance for 

optically deep water 
Rrs Surface remote sensing reflectance 
θw Subsurface solar zenith angle 
u Ratio of backscattering coefficient to the 

attenuation coefficient 
Y Spectral power for particle backscattering 

coefficient 
 

III. IMPLEMENTATION 
We have implemented the semi-analytical inversion 

model using the Message Passing Interface (MPI) [5].  MPI 
is the de facto standard specification for implementing 
parallel applications on distributed memory systems.  There 
exist a number of MPI implementations (e.g. MPICH [6] 
and LAM-MPI [7]). We are using LAM-MPI 7.1.1 in our 
implementation. 

 
The problem we address here can be thought of as having 

a simple decomposition into independent parts that can be 



processed simultaneously, with communication occurring 
only at the start and the end of the application. The 
decomposition permits to send one array of pixels to every 
processor, for its analysis. It is possible because the analysis 
of pixels is independent of each other. The master-slave 
scheme [8] is utilized such that the master coordinates all 
the process and slaves are in charge of pixels processing. 

 
The ConminC++ Library [9] is used for solving the  

unconstrained nonlinear optimization problem associated to 
the semi-analytical inversion model.   

 

IV. RESULTS AND ANALYSIS 
The Parallel and Distributed Computing Laboratory 
(PDCLab) at the University of Puerto Rico at Mayaguez 
(http://pdc.ece.uprm.edu) facilitated the use of an IBM 64 
dual-processor nodes xSeries Server cluster running under 
Linux and LAM-MPI/C++.  
 
The accuracy of the results is compared to those obtained 
with the original IDL (Interactive Data Language) 
implementation. Figure 1 illustrates the difference of the 
IDL and the MPI/C++ implementations for the objective 
function values at pixels. Notice that the optimization 
strategies used in IDL and ConminC++ yield similar results. 
Pixel by pixel only eight of 2,500 pixel produces different 
results. Figure 2 shows a comparison of water depth error 
values obtained with IDL and MPI/C++. Actual data is 
represented by the diagonal in the graph. Notice that for 
values beyond 8 meters it appears that the IDL code 
overestimates water depth values. This is a significant result 
that needs more analysis. This overestimation may be 
associated to the optimization routine used in IDL.    

 
 

 
To examine the performance of the parallelization, we first 
evaluate execution time and then we demonstrate the scaling 
of the speedup (ratio of single code execution time over 
parallel code execution time). Figure 3 shows the dramatic 
execution time reduction obtained as we increase the 
number of processors. For 88 processors, for example, we 
can obtain the minimum time 26,4 seconds, a 2.51% of 
serial time. Figure 4 illustrates the speedup obtained as we 
increase the number of processors. Notice that even a 
superlinear speedup is obtained between 8 and 92 
processors indicating maximum efficiency of cache 
utilization. For the specific machine and problem size of 
these experiments it is not more cost effective to use beyond 
88 processors. To reach more efficiency it is necessary to 
increase the problem size meaning the size of the images or 
the number of parameters being analyzed.   
 

V. CONCLUSIONS 
The primary objective of this paper has been to demonstrate 
the efficiency of a parallel implementation of a semi-
analytical inversion model for hyperspectral remote sensing 
analysis. The model has been applied successfully to 
simultaneously classify water properties, bathymetry and 
benthic composition associated with coral reefs. The 
realization of this parallel processing framework will allow 
investigate alternative optimization schemes for evaluating 
the inversion model, perform a sensitivity analysis of the 
inversion model’s physical parameters, identify the most 
significant parameters to adjust for improving model 
performance, and ultimately develop a more 
computationally efficient framework for implementing the 
inversion model. Experimental results show a 97% of 
efficiency.

 

Figure 1.  Objective function Difference; IDL vs. MPI 

 



 

Figure 2.  Water Depth Values; IDL vs. MPI 

 

 

Figure 3.  Parallel Execution Times 

 

 

 

Figure 4.  Speedup 
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