
Parallel Performance
Investigation of a
Domain Decomposition
Algorithm

W. Rivera∗, J. Zhu†, and D.H. Huddleston‡

1 Introduction
Convection-diffusion equations in the form of

ut + α∇u = ∇ · (β∇u), x ∈ Ω, t > 0, (1)

u(x, t) = f(x, t), x ∈ ∂Ω, t > 0,

u(x, 0) = g(x), x ∈ Ω,

where Ω is the spatial domain and ∂Ω is the boundary of Ω, are widely used in
science and engineering as mathematical models for computational simulations, such
as in oil reservoir simulations, analysis of flow field around airplanes, transport of
solutes in groundwater, and global weather prediction. In particular, when β = 0,
equation (1) becomes a pure convection equation.

For large-scale problems, particularly those defined in two- or three-dimensional
spatial domains, the computation of solutions may require substantial CPU time. It
is therefore desirable to use multiprocessor parallel computers to calculate solutions.
A widely used method for solving time dependent PDEs on parallel computers is do-
main decomposition [2]. It dates back to the classical Schwarz alternating algorithm
with overlapping subdomains [12] for solving elliptic boundary value problems. Note

∗Wilson Rivera, Electrical and Computer Engineering Department, University of Puerto Rico
at Mayaguez (wrivera@ece.uprm.edu).

†Jianping Zhu: Department of Mathematics and Statistics, Mississippi State University,
(jzhu@erc.msstate.edu).

‡David H. Huddleston, Department of Civil Engineering, Mississippi State University,
(hudd@erc.msstate.edu).

1

2

that the original motivation for using domain decomposition method was to deal
with complex geometries, equations that exhibit different behaviors in different re-
gions of the domain, and memory restriction for solving large scale problems.

When solving time dependent PDEs with non-overlapping subdomains on par-
allel computers, the domain decomposition method could either be used as a pre-
conditioner for Krylov type algorithms [2], or as a means to decompose the original
domain into subdomains and solve the PDEs defined in different subdomains con-
currently [4]. When it is used as a preconditioner, the relevant PDE is discretized
over the entire original domain to form a large system of algebraic equations, which
is then solved by Krylov type iterative algorithms. The preconditioning step and the
inner products involved in the solution process often incur a significant amount of
communication overhead that could significantly affect the scalability of the solution
algorithms.

On the other hand, if the original domain Ω is decomposed into a set of non-
overlapping subdomains Ωk, k = 1, · · · ,M , it would be ideal that the PDEs defined
in different subdomains could be solved on different processors concurrently. This
often requires numerical boundary conditions at the boundaries between subdo-
mains. These numerical boundary conditions are not part of the original math-
ematical model and the physical problem. One way to generate those numerical
boundary conditions is to use the solution values from the previous time step tn
to calculate the solutions at tn+1 [1, 8]. This is often referred to as time lagging
(TL). The other way to generate numerical boundary conditions is to use an ex-
plicit algorithm to calculate the solutions at the boundaries between subdomains,
using the solutions from the previous time step, and then solve the PDEs defined on
different subdomains concurrently using an implicit method [3, 6]. This is referred
to as the explicit predictor (EP) method in this paper. In an earlier paper [9], the
authors showed, in the context of the numerical solution of one-dimensional linear
eat equation, that the stability and accuracy of the solution algorithm can be sig-
nificantly affected by the TL and EP methods. A new approach based on explicit
predictors and implicit correctors (EPIC) for the solution of convection-diffusion
equations was proposed in another previous paper [10]. The results demonstrated
a significant improvement in accuracy when calculating transient solutions. In this
paper a systematic investigation of parallel performance and scalability for this new
approach will be presented. The next section is devoted to the description of the dif-
ferent methods for generating numerical boundary conditions between subdomains.
The parallel implementation and performance models will be discussed in Section 3.
Parallel performance for the solution of Euler equations will be presented in Section
4, followed by the conclusions in Section 5.

2 Domain Decomposition and Numerical Boundary
Conditions

For simplicity of the discussion, the following one-dimensional linear model with
constant coefficients and homogeneous boundary conditions is used here to describe

3

different methods for generating numerical boundary conditions:

ut + αux = βuxx, 0 < x < 1, 0 < t ≤ T,

u(0, t) = u(1, t) = 0, t > 0, (2)

u(x, 0) = g(x), 0 ≤ x ≤ 1.

The original spatial domain Ω = [0, 1] is discretized by a set of grid points xi, i =
0, . . . , L, uniformly distributed with ∆x = xi − xi−1 = 1

L . The temporal domain
[0, T] is discretized by a set of discrete time steps tn, n = 0, · · · , N, with ∆t =
tn − tn−1 = T

N . The numerical solution u(xi, tn) is denoted by un
i , and the original

spatial domain is decomposed into M subdomains Ωk, k = 1, . . . ,M , where the
two end points of subdomain Ωk are denoted as rk−1 and rk, respectively. Each
subdomain Ωk has m+1 points including the two end points rk−1 and rk. Since only
two physical boundary conditions are available at the points r0 and rM , numerical
boundary conditions are needed at points rk, k = 1, · · · ,M −1, if the PDEs defined
in different subdomains are to be solved concurrently using an implicit algorithm.

Various finite difference algorithms are available for discretizing equation (2).
For example, the forward time central difference (FTCS) scheme given is by

un+1
i = (r +

R

2
)un

i−1 + (1 − 2r)un
i + (r − R

2
)un

i+1, (3)

i = 1, ..., L− 1, n = 0, ..., N − 1,

where R = α ∆t
∆x and r = β ∆t

∆x2 , and the implicit backward time central difference
(BTCS) scheme is given by

−(r +
R

2
)un+1

i−1 + (1 + 2r)un+1
i − (r − R

2
)un+1

i+1 = un
i ,

i = 1, ..., L− 1, n = 0, ..., N − 1. (4)

2.1 Time-Lagging (TL) Method

For the TL method, the boundary conditions between subdomains are generated
by setting

ūn+1
rk−1 = un

rk−1,

ūn+1
rk

= un
rk
, k = 1, . . . ,M − 1. (5)

Note that the left side of subdomain Ωk, k = 2, . . . ,M , is extended to rk−1−1
in order to advance the solution value at the point rk−1 to the next time level. An
implicit scheme is then used to solve the PDE in each subdomain concurrently.

The method is stable and causes an additional truncaton error of order O[(∆t)
(∆x)].

2.2 Explicit-Predictor (EP) Method

For the EP method with central difference for both the convection and diffusion
term, the algorithm can be written as

4

• Predictor

ūn+1
rk

= (r +
R

2
)un

rk−1 + (1 − 2r)un
rk

+ (r − R

2
)un

rk+1, k = 1, · · · ,M − 1, (6)

• Calculation of solutions in each subdomain

a0 a1 0 · · · 0

a2 a0 a1
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . a1

0 · · · 0 a2 a0

un+1
rk−1+1

un+1
rk−1+2

...
un+1
rk−2

un+1
rk−1

=

un
rk−1+1 − a2ū

n+1
rk−1

un
rk−1+2

...
un
rk−2

un
rk−1 − a1ū

n+1
rk

, (7)

k = 1, · · · ,M,

where a0 = 1 + 2r, a1 = −(r − R
2), and a2 = −(r + R

2).
The method is only conditionally stable. For example, when
R ≥ 1, the scheme is unstable. The additional error caused by the EP method

with central difference is dominated by the term of order O[∆t2

∆x].

2.3 Explicit-Predictor Implicit-Corrector (EPIC)

The EPIC method combines the advantages of both the TL (stability) and EP
(accuracy) methods. The following are the main steps of the EPIC method with
central difference for both the convection and diffusion terms:

• Use an explicit predictor, such as the FTCS algorithm, to generate the nu-
merical boundary conditions at the end points rk, k = 1, · · · ,M − 1, of all
subdomains:

ūn+1
rk

= (r + R)un
rk−1 + (1 − 2r)un

rk
+ (r −R)un

rk+1, k = 1, ...,M − 1, (8)

• Solve the systems of equations in all subdomains Ωk, k = 1, · · · ,M − 1, con-
currently:

a0 a1 0 · · · 0

a2 a0 a1
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . a1

0 · · · 0 a2 a0

un+1
rk−1+1

un+1
rk−1+2

...
un+1
rk−2

un+1
rk−1

=

un
rk−1+1 − a2ū

n+1
rk−1

un
rk−1+2

...
un
rk−2

un
rk−1 − a1ū

n+1
rk

, (9)

• Update the numerical boundary conditions at points rk, k = 1, · · · ,M − 1,
using an implicit corrector, such as the BTCS algorithm:

un+1
rk

=
(r + R)

(1 + 2r)
un
rk−1 +

1

(1 + 2r)
un
rk

+
(r −R)

(1 + 2r)
un+1
rk+1. (10)

The method is stable and causes an additional truncation error of order O[∆t2

∆x].

5

3 Parallel Implementation
In the following discussion we assume ideal conditions for load balancing, that is,
the number of subdomains is equal to the number of processors, and the number of
grid points is roughly equal in all subdomains.

In the first step of the computation, each processor calculates the numerical
boundary condition(s) needed for its subdomain using an explicit method, such as
(4). Note that the first and the last processor only need to calculate one numerical
boundary condition, while other processors need to calculate two numerical bound-
ary conditions. These computations can be done concurrently on all processors.

In the second step, each processor forms the system of linear algebraic equa-
tions similar to that in (4) using the numerical boundary conditions calculated at
the first step, and then solves the system of equations. These computations can
also be done concurrently on all processors.

After the solutions have been calculated, each processor must send to and
receive from its neighboring processors the solutions at the points next to the end
points of the subdomain. For the processor holding subdomain Ωk with the end
points rk−1 and rk, it must send the calculated solutions at rk−1 + 1 and rk − 1
to the left and right neighboring processors, respectively, and receive the newly
calculated solutions at the points rk−1 − 1 and rk + 1 from the left and right neigh-
boring processors, respectively. Note that the first and the last processors on the
chain only need to communicate with one neighboring processor. This is the only
communication step involved in the EPIC method.

In the last step of the computation, each processor corrects the numerical
boundary condition(s) at the end of its subdomain using an implicit method, such
as (4). This can again be done in parallel.

The message passing standard MPI [5] is used in the code implementation to
ensure maximum portability to a wide range of architectures, including both dis-
tributed and shared memory parallel computers, as well as clusters of workstations
and personal computers.

4 Parallel Performance
In order to simplify the discussion in the previous sections, we have considered a one-
dimensional convection-diffusion model. However, to evaluate parallel performance
of the methods we will consider the solution of the Euler equations in the flow
calculation around a NACA0012 airfoil.

The algorithm applied to the entire domain without domain decomposition is
an implicit finite volume formulation, first order accurate in time with an approxi-
mate Riemann solver based on Roe flux approximation to achieve up to third order
spatial accuracy as reported by Whitfield et al. [13],

For parallel processing, The MacCormack scheme [7] is used as the predictor
method; and the Euler solver based on the Roe’s scheme [13] is used to calculate
solutions in all subdomains concurrently, and to update the boundary data between
subdomains.

The algorithms have been tested on an SGI Power Challenge XL parallel

6

0 4 8 12 16
Number of Processors

0

4

8

12

16

S
pe

ed
up

Ideal LInear Speedup
TL Speedup
EPIC Speedup

Figure 1. Speedup: 129 × 31 grid for the NACA0012 airfoil

computer with 16 R8000 processors. The following set of figures compare the per-
formance of the TL algorithm vs. the EPIC algorithm. We do not consider the EP
algorithm in the discussion because there is no significant difference between the
EP and EPIC algorithms due to the corrector step.

Figure 1 shows the speedup obtained using a coarse 129 × 31 C-grid for the
computation of the steady state solution at Mach number M∞ = 0.85 and angle of
attack α = 1.0. Speedup is defined as the ratio between the sequential execution
time and the parallel execution time. For fixed size problems, speedup is limited
because of the overhead which grows with increasing number of processors or be-
cause the number of processors exceeds the degree of concurrence of the algorithm,
that is, the maximum number of tasks which can be executed simultaneously.

As a consequence the problem size should be increased in order to achieve an
improvement in performance. Efficiency, which is the ratio between the sequential
execution time and the cost of the parallel system, may be maintained constant by
increasing the problem size as the number of processors increases.

Figure 2 shows the speedup curves for a finer 290 × 81 C-grid. A better
performance of the EPIC algorithm can be noted.

It is clear from the figures that the EPIC algorithm scales well as the number
of processors increases for large scale problems. Even a slight superlinear speedup
can be observed from the Figure 2. This is mainly due to the nonuniform access
latency for different levels of cache and memory on SGI Power Challenge. When
more processors are used, the array sizes of the code on each processor become
smaller, which preserves data locality better and results in more efficient utilization
of local cache and memory.

The steady-state solution of a problem requires a sufficient number of time
steps to reduce the solution residual to a small value. The number of time steps
to obtain the steady state solution depends on the solution technique, the size
of the problem, the number of subdomains, and the desired level of convergence
of the solution. This suggests a tradeoff between accuracy of the solution and
performance. The problem size should be increased as the number of subdomains

7

0 4 8 12 16
Number of Processors

0

4

8

12

16

S
pe

ed
up

Ideal Linear Speedup
TL Speedup
EPIC Speedup

Figure 2. Speedup: 290 × 81 grid for the NACA0012 airfoil

0 4 8 12 16
Number of Subdomains

0

0.5

1

1.5

2

2.5

3

3.5

N
um

be
r

of
 It

er
at

io
ns

 (
x

10
00

)

Figure 3. Influence of number of subdomains on the solution convergence:
◦ − −◦ TL Method and � − · − � EPIC Method.

increases to achieve an improvement on performance, and on the other hand, the
increase in the number of subdomains and problem size have an important impact
on the solution convergence properties.

Figure 3 shows the number of iterations needed to reduce the residual to order
10−8 with regard to the number of subdomains. More iterations are necessary for
the TL method compared to the EPIC method to reduce the solution residual as
the number of subdomains increases.

5 Conclusions
A systematic investigation of parallel performance and scalability for a domain
decomposition algorithm based on explicit predictors and implicit correctors has
been presented. This method has demonstrated a significant improvement in ac-
curacy when calculating transient solutions of time dependent partial differential

8

equations. The results in this paper show that the new approach scales well as
the number of processors increases for large scale problems. In addition, we have
shown the tradeoff between accuracy of the solution and performance of the parallel
implementation.

Bibliography

[1] S. Barnard, S. Saini, R. Van der Wijngaart, M. Yarrow, L.
Zechtzer, I. Foster, and O. Larsson, “Large-scale distributed computa-
tional fluid dynamics on the information power grid using Globus,” in Proceed-
ings of the 7th Symposium on the Frontiers of Massively Parallel Computation,
1999.

[2] T. F. Chan and T. P. Mathew, “Domain decomposition algorithms,” Acta
Numerica, 3 (1994), pp. 61-143.

[3] C. N. Dawson, Q. Du, and T. F. Dupont, “A finite difference domain
decomposition algorithm for numerical solution of the heat equations,” Math-
ematics of Computation, 57 (1991), pp. 63 - 71.

[4] D. Drikakis and E. Schreck, “Development of parallel implicit Navier-
Stokes solvers on MIMD multi-processor systems,” AIAA 93-0062.

[5] W. Gropp, M. Snir, B. Nitzberg, E. Lusk, “MPI: The Complete Refer-
ence,” MIT Press, Cambridge, 1998.

[6] Y. A. Kuznetsov, “New algorithms for approximate realization of implicit
difference schemes,” Sovietic Journal of Numerical Analysis and Mathematical
Modeling, 3 (1988), pp. 99-114.

[7] R. W. MacCormack, “The effects of viscosity in hypervelocity impact cra-
tering,” AIAA 69-354, 1969.

[8] R. Pankajakshan and W. R. Briley, “Parallel solution of viscous incom-
pressible flow on multi-block structured grids using MPI,” Parallel Computa-
tional Fluid Dynamics: Implementation and Results Using Parallel Computers,
A. Ecer, J. Periaux, N. Satofuka, and S. Taylor, ed., Elsevier Science, Amster-
dam, 1996, pp. 601-608.

[9] W. Rivera and J. Zhu, “A scalable parallel domain decomposition algo-
rithm for solving time dependent partial differential equations,” Proceedings
of the 1999 International Conference on Parallel and Distributed Processing
Technology and Applications, H. R. Arabnia Ed., CSREA Press, Athens, GA
1999, pp. 240-246.

9

10

[10] W. Rivera, J. Zhu and D. Huddleston, “An efficient parallel algorithm
with application to computational fluid dynamics,” To appear in Computers &
Mathematics with Applications.

[11] P. L. Roe, “Approximate Riemann solvers, parameter vector, and difference
schemes,” Journal of Computational Physics, vol. 43, pp. 357–372, 1981.

[12] H.W. Schwarz, “Gesammelete Mathematische Abhandlungen,” 2 (1890),
pp. 133-143.

[13] D. L. Whitfield, J. M. Janus, and L. B. Simpson, “Implicit finite volume
high resolution wave split scheme for solving the unsteady three-dimensional
Euler and Navier-Stokes equations on stationary or dynamic grids,” Engineer-
ing and Industrial Research Report MSSU-EIRS-ASE-88-2, Mississippi State
University, 1988.

