An Object Oriented Framework for Computational
Fluid Dynamics Simulations

Freddy Perez and Wilson Rivera

Electrical and Computer Engineering Department
Parallel and Distributed Computing Laboratory
University of Puerto Rico Mayaguez
Mayaguez, PR 00681, USA
{f perez, wrivera}@ece.uprm.edu

Abstract. This paper describes an object-oriented framework for solving
computational fluid dynamics problems on parallel computers. The design and
components of the framework are discussed related to design patterns methodology.
The proposed framework offers higher-level programming abstractions for
parallelization and improves the overall efficiency of implementation.

Keywords: object-oriented programming, pattern design, computational
fluid dynamics, Java.

1. Introduction

The rapid development of parallel and distributed systems, numerical algorithms,
and high-speed data networks has resulted in dramatically increased computational
power and efficiency. As a result, Computational Fluid Dynamics (CFD) has emerged
as an essential analysis tool applied extensively in analyzing fluid mechanics, heat
and mass transfer, hydrodynamics, atmospheric sciences, solid mechanics, water
quality, and transport problems. Thus in the CFD process, the partial differential
equations (PDEs), which govern the problem of interest, are solved using numerical
methods on high performance parallel computers [1, 2, 3]. One of the challenges in
this arena is creating a flexible and open development environment that help reduce
the high cost of implementing parallel codes as comparing to the traditional approach
in which the application programmer handles all the implementation details. From the
implementation point of view, modern programming languages offer powerful tools
for flexibility, such as the inheritance of object-oriented programming. The numerical
approach however should be flexible as well. Consequently, flexible domain
decomposition techniques need to be implemented, without compromising the
accuracy of the algorithms [4]. In addition, efficient management strategies are
needed to deal with all the software components.

We propose a high-level parallelization of CFD codes through an extensive use of
object-oriented programming techniques. A modular implementation of mathematical
abstractions, which is a direct advantage of object-oriented programming, allows for
the generalization of computational kernels, which are reusable in many simulation
applications. This approach makes it possible to hide computational details when it is

2 Freddy Perez and Wilson Rivera

needed as well as produce simulators with unified generic interfaces. In this paper, we
describe our experience in building an object-oriented framework for parallel flow
simulations. The description of the framework is presented with emphasis on design
patterns methodology [5].

Design patterns provides a high level perspective on both the problem and the
process of design and object orientation [6]. A pattern describes a core solution of a
problem that occurs frequently in an environment. There are three types of patterns:
Creational, structural and behavioral patterns [7]. Creational patterns create objects
rather than instantiate objects directly. Examples of such patterns are builder, factory,
prototype, and singleton patterns. Structural patterns help compose groups of objects
into large structures such as complex user interfaces. Representatives of these patterns
are adapter, bridge, composite, and proxy. Behavioral patterns, in turn, help define
the communication between objects and how the flow is controlled in a complex
system. Examples of such patterns are interpreter, mediator, observer, strategy, and
template. The base pattern of our framework is the builder pattern, which creates a
context to use others patterns. The factory pattern is used to select different
approaches to solve a CFD problem. We have also used the mediator pattern for the
communication among objects created by the builder pattern, and the observer pattern
for data communication and parallelization.

This paper is organized as follows. Session 2 depicts the design and components of
our framework. Session 3 discusses a study case. Finally, conclusions and future work
are listed in session 4.

2. Framework Architecture

We use design patterns to define the software architecture and design of the
framework. The main pattern of our framework is the builder pattern (see Figure 1). A
builder pattern simplifies the creation of complex objects by defining a class whose
purpose is to build instances of other classes. Since each CFD problem may have
different configuration and requirements, it is needed to construct a particular
complex object for each particular problem. Each complex object, referred to as
Solver, is a solver for an equation on a particular mesh, using a numerical method
with particular initial and boundary conditions. The class ConcreteBuilderSolver is
responsible for the creation of Solver. The four components of Solver are the classes
Equation, Mesh, NMethod, and IBConditions. Instances of these classes will be
created in the class BuilderSolver through the methods buildEquation(), buildMesh(),
buildNMethod(), and buildIBCondition(), respectively.

The object Solver is created according to information provided by the user through
a graphical user interface. Such input data is obtained by the class Director through
the method contruct(). The Equation class has a reference to the interface
ProductEquation and defines the same methods of this interface. This definition
allows for the communication between the class Equation and any instance of the
classes that implement ProductEquation, such as EulerEquation, HeatEquation, and
NavierEquation. This design allows us, when needed, include another type of

An Object Oriented Framework for Computational Fluid Dynamics Simulations 3

equations with the implementation of the methods defined in the interface
ProductEquation.

Builder=olver
Director
®huildEquation
*huildMeshi .
*uildkMethodo) construct()
®huildIBConditiond i
ConcreteBuilderSalver :
____________________ Sobkver
“‘getSulverﬂ
W

FroductSaolver

Fig. 1. Builder Pattern Implementation

4 Freddy Perez and Wilson Rivera

CreatorEquation FProductEquation

®anOperationd 2 ﬁl‘ T

SactoryMethod() . :

EulerEquation

]
'

"
1

HeatEgquation

MavierEquation

ConcreteCreatorEquation)

SactoryMethod()

Fig. 2. Factory Pattern Implementation

The interface ProductEquation is implemented as a factory pattern (see Figure 2).
The main idea behind factory patterns is to delegate the decision of the kind of object
to be created to other subclasses. The method factoryMethod(), which is defined in the
class CreatorEquation and implemented in the class ConcreteCreatorEquation,
returns an instance of ProductEquation (e.g., EulerEquation, HeatEquation or
NavierEquation). The methods of this instance are called using the methods of the
class Equation because there is a reference to the class ProductPanel. In the same
way we can obtain a specific instance of the classes that implement the interface
ProductMesh using a factory pattern again. The class Mesh will be an interface
between Solver and any instance of the classes UnstructuredMesh or StructuredMesh.
Both classes implement the interface ProductPanel. With little or none modification
we can obtain a specific instance of IBCondition using the technique described above.
In order to obtain an instance of the classes ExplicitNMethod or ImplicitNMethod,
certain modifications are needed according to the numerical method used to solve the
equations.

The communication among the different objects is the core of the framework. If we
considered direct communication among objects, we would lose modularity by a tight
coupling. This problem is solved by using a mediator pattern. This pattern is a center
of communication among the components that simplifies communication. The
instances of Equation, Mesh, and NMethod send information to Mediator. On the
contrary, IBCondition receives information from Mediator. The communication is
carried out by the methods sendData() and receivedData() defined in the different
classes, and administered by the methods in the class Mediator (see Figure 3).

An Object Oriented Framework for Computational Fluid Dynamics Simulations 5

Mediator

Equation Mesh IBC ondition NMethad

Fig. 3. Mediator Pattern Implementation

3. Case Study

To illustrate the usefulness of the proposed framework, a case study of a subsonic
unsteady turbulent flow over a NACAO0O012 airfoil has been performed. The governing
equations are the Navier Stokes equations, which can be written as:

%'U+V.(pu) -0
%"uv.(pu ®U)+V.(pu) = V(e + 14,)8) 1)

%ﬂ VA((PE + p)U) = V((pt + 1)SU) + V.((x + £)T)

where p is the density, u the velocity, T temperature, E the total energy, p the

2
pressure, S =(VU+VU')==DI the deformation tensor, and g and 4, the
3

laminar and turbulent viscosities. To model turbulence a k-¢ model is used, which can
be written as:

6 Freddy Perez and Wilson Rivera

%Jrv.(puk) = V(4 + p)VK) = Sy

b
% +V.(pug) = V.((u+c,1)Ve) =S,

2

The Navier-Stokes and k-¢ equations are solved by a finite-volume Galerkin
upwind technique [8] using Roe Riemann solver [9]. The viscous terms are computed
using a standard Galerkin method. The computational configuration and mesh of the
case study are shown in Figure 4, such as they appear in the graphical user interface.
The plot of Mach number lines shown in Figure 5 is for a low-Mach number
(M.=0.1), turbulent (Reynolds number =10°) flow. We have obtained encouraged
numerical results and performance for diverse configurations.

The architecture of the framework facilitates the implementation of different
numerical methods without major efforts. The use of domain decomposition
techniques as described in [4] are significantly simplified by using the observer
pattern. This pattern governs the domain decompositions strategies and the
communication between subdmoains. We have used mpiJava [10] for the
implementation of the parallel algorithms. However, the framework is independent of
the message passing implementation used and can be modified easily as consequence
of the programming abstractions provided by the observer pattern.

Fig. 4. Case Study General Information and Mesh

An Object Oriented Framework for Computational Fluid Dynamics Simulations

Graph-

Pressure
Friction

Mesh
Ratio/pressu |
Mal_:h _N_‘pm‘hér |
Velocity
Residual

Mach Number

Fig. 5. NACA 0012 Airfoil Mach Number Lines

4, Conclusions

An object-oriented framework for solving computational fluid dynamics problems
on parallel computers has been presented. We argue that the combination of flexible
domain decomposition methods with extensive use of object-oriented techniques will
result in an efficient, flexible, and systematic process for developing parallel codes.
We have shown how design patterns methodology contributes to produce reusable
software. The effectiveness and advantages of the framework is illustrated upon a
case study of a subsonic unsteady turbulent flow over a NACAO0012 airfoil. Further
research and development is needed to make the framework capabilities complete and

tuned for performance.

Acknowledgements

This work was supported by the UPRM-NSF PRECISE Project (EIA-NSF 99-

77071).

1o Graphic \
[Detete |

7

8

Freddy Perez and Wilson Rivera

References

1. S. W. Hammond and T. J. Barth, “Efficient massively parallel Euler solver
for two-dimensional unstructured grids.” AIAA, 30(4): 947-952, 1992.

2. D. Drikakis and E. Schreck, “Development of parallel implicit Navier-Stokes
solvers on MIMD multiprocessor systems," AIAA, 93-0062.

3. R. Pankajakshan and W. R. Briley, ‘“Parallel solution of viscous
incompressible flow on multi-block structured grids using MPL.” In Parallel
Computational Fluid Dynamics: Implementation and Results Using Parallel
Computers, Elseiver Science, 601-608, 1996.

4. W.Rivera, J. Zhu, and D. Huddleston, “An Efficient Parallel Algorithm with
Application to Computational Fluid Dynamics." To appear in Computers and
Mathematics with Applications.

5. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Patterns:
Elements of Reusable Object-Oriented Software.” Addisson-Wesley, 1995.

6. J. Copper, “The Design Patterns Java Companion.” Addisson-Wesley, 1998.

7. A. Shalloway and J. Trott, “Design Patterns Explained.” Addisson-Wesley,
2002.

8. K. W. Morton, “On the analysis of finite volume methods for evolutionary
problems.” SIAM Journal on Numerical Analysis, 35 (6): 2195-2222, 1998.

9. P. L. Roe, “Approximate Riemann solvers, parameter vector, and difference
schemes.” Journal of Computational Physics, 43: 357-372, 1981.

10. M. Baker, B. Carpenter, G. Fox, S. Hoon Ko, and X. Li. mpiJava: A Java

interface to MPL. In First Workshop on Java for High Performance Network
Computing, Europar '98.

