
Mapping and Characterization of Applications in
Heterogeneous Distributed Systems

Jaime Yeckle and Wilson Rivera

Computing and Information Sciences and Engineering
Parallel and Distributed Computing Laboratory
University of Puerto Rico, Mayaguez Campus

Mayagüez, PR 00681-9042
{jyeckle, wrivera}@ece.uprm.edu

Abstract

The problem of mapping tasks and communications
onto multiple machines and networks in a
heterogeneous computing environment has been
shown to be NP complete. Therefore, the
development of heuristic techniques to find near-
optimal solutions is required. Many different types of
mapping heuristics have been developed in recent
years. However, selecting the best heuristic to use in
any given scenario remains a difficult problem.
Moreover, it is not possible to make a general
mapping in a heterogeneous computing environment.
In this paper we propose to characterize classes of
applications with the objective of predicting their
behavior. Using the insight provided by the
characterization, we achieve a more realistic mapping
for specific applications.

1 Introduction

 The steady decrease in cost and increase in
performance of commodity workstations and
personal computer have made it increasingly
attractive to use clusters of such systems as compute
servers instead of high-end parallel supercomputers
[16]. Due to the rapid advance in performance of
commodity computers, when such clusters are
upgraded by addition of nodes, they become
heterogeneous. The issue of effective mapping of
applications onto such heterogeneous clustered
systems is therefore of great interest. Several
research studies have addressed this problem
[5,42,8,32,41,1,11,10,37]. However the problem is
NP complete [9,22], therefore, the development of
heuristics techniques is required. Many factors make
it difficult to select the best technique of mapping.
These factors can be described as follows:

1. A distributed computing environment has

conflicting requirements [14]: (i) While
minimizing interprocessor communication tends
to assign the entire computation to a single
processor, load balancing tries to distribute the
computation evenly among the processors. (ii)
While real-time constraints require many
processors as possible to maximize parallel
execution, the precedence relationships limit
parallel execution. (iii) The saturation effect
suggests the use of fewer processors since
inefficiency increases with the number of
processors.

2. When one heuristic technique is presented and

evaluated in the literature, typically, different
assumptions are made about the underlying
target platforms making comparisons
problematic. Similarly, different assumptions
about application models complicate
comparisons. In addition, the algorithms should
take into account characteristics of processors,
network architecture and applications.
Regarding applications, for example, the
existing algorithms only consider the size
property.

 In this paper, we propose to characterize classes of
applications with the objective of predicting their
behavior. In order to obtain this characterization of
applications, we consider observations and statistical
methods. Using the insight provided by the
characterization, we propose a more efficient and
realistic mapping for specific applications.

 The rest of the paper is organized as follows.
Section 2 begins with the description of different
mapping schemes and taxonomy for describing
matching and scheduling heuristics for heterogeneous
computing systems. Section 3 presents the
methodology for characterizing applications and the
use for heterogeneous distributed systems. The paper

concludes with comments about the proposed
strategy and its extensions in section 4.

2 Taxonomy of Mapping

 Mapping includes assigning (matching) each task to
a machine and ordering (scheduling) the execution of
the tasks on each machine [4]. The mapping problem
is extremely difficult to solve and generally
intractable [3,26]. Even the simplified subproblems
constructed from the original mapping problem by
imposing a variety of constraints still fall in the class
of NP hard problems. The difficulty of solution varies
with the inclusion or exclusion of preemption, the
number of parallel processors, precedence
constraints, etc.
 We now classify the various strategies for
multiprocessor scheduling, task mapping, and
resource allocation under a common, uniform set of
terminology [7]. The Figure 1 shows the structure of
the hierarchical portion of the taxonomy. The
strategies can be classified as being either static or
dynamic.

 Static Mapping versus Dynamic Mapping: In the
static mapping case the entire information regarding
the processes in the host system, as well as the
processes involved in a job, is assumed to be
available a priori [41,28,37,32]. On the other hand, in
the dynamic mapping a more realistic assumption is
used, that is very little a priori knowledge is available
about the resource needs of a process. In the static
case, a decision is made for a process image before it
is ever executed, while in the dynamic case no
decision is made until a process starts.
 Optimal versus Suboptimal: In the case that all
information regarding the state of the system as well
as the resource needs of a process are known, an
optimal assignment can be made based on some
criterion function [19,29,35,30]. Examples of
optimization measures are minimizing total process
completion time and maximizing utilization of
resources in the systems.
In the case that these problems are computationally
infeasible, suboptimal solutions may be obtained
[28,33,40]. Within the realm of suboptimal solutions
to the mapping problem, the heuristic algorithms
represent the category of static algorithms that make
a realistic assumption about a priori knowledge
concerning process and host system characteristics.
The most distinguishing feature of heuristic
schedulers is that they make use of special
parameters, which affect the system in indirect ways.
 Optimal and Suboptimal Approximate
Techniques: Regardless a static solution is optimal or

suboptimal approximate, there are four basic
categories of task allocation algorithms, which can be
used to arrive at an assignment of processes to
processors:

Figure 1. Taxonomy of mapping

• Solution space enumeration and search
• Graph theory
• Mathematical programming
• Queuing theory

 Distributed Versus Nondistributed: Distributed
mapping means that the work involved in making
decisions should be physically distributed among the
processors [15]. On other hand, nondistributed
means whether the responsibility for the task of
global dynamic scheduling physically resides in a
single processor [31].
 Cooperative versus Noncooperative: Cooperative
means that all mechanisms which involve
cooperation between distributed components and
Noncooperative whether the individual processors
make decisions independent of the actions of the
other processors

 Many algorithms have been published addressing
the problem of matching and scheduling, where
several simplifying assumptions are common.
Orduña [32], for example, describes a mapping
scheme assuming all the network switches are
attached to the same number of workstations, the
workstations are uniprocessors, and only one process
is mapped to each processor. These assumptions
nevertheless determine system performance.

 Another simplifying assumption is made in [13].
In this paper mapping is modeled with forward flow
only. Programs with dynamic structures are not
considered. Also, Ahmad and Kwok [1] compared
several algorithms for scheduling task graphs. The
algorithms have different assumptions: bounded and
unbounded number of processors and clusters, task
duplication based scheduling and arbitrary processor
network scheduling.

 In the previous discussion, most of the approaches
focus primarily on specific mapping strategies for
particular multiprocessor architectures. Some
approaches intend to take advantage of hardware
characteristics, such as the interconnection network
of architectures. Others take advantage of
characteristics of processors and very few papers take
advantage of characteristics of applications. Also
exist other approaches, such as [10] which intent to
generalize mapping and scheduling. By large, these
approaches assume homogeneous conditions for
many characteristics of applications or architecture of
hardware. Therefore, a general mapping to all
applications and characteristics of hardware and
network is difficult to obtain. We propose a specific
mapping considering hardware issues in the context
of specific applications. To achieve this, we propose
a characterization of the applications with the
objective to predict behavior.

3 Characterization of Applications

 In this section, we provide a new approach to
mapping in heterogeneous distributed system
considering the characterization of applications.

3.1 Characteristics of Applications

 The characteristics of the applications (which can
be tasks or subtasks) can be defined as follows:

 Application size: This mean if a task contains
subtasks or not.
 Application type: Types of applications to be
mapped.
 Communication patterns: This mean to the
sources and destination subtasks for each data item to
be transferred.
 Data availability: The time at which input data
needed by a subtask or output data generated by a sub
task can be utilized varies in relation to subtask start
and finish times: (a) is data available (to be
forwarded) before a subtask completes, and (b) can a
subtask begin execution before receiving all of its
input data? As an example, a clustering non-uniform
assumes that a subtask cannot send data to other

waiting subtasks until it completely finishes
executing.
 Deadlines: the applications have deadlines.
 Execution time model: Most mapping techniques
require an estimate of the execution time of each
application on each machine. The two choices most
commonly used are probabilistic and deterministic
modeling. Probabilistic modeling uses a probability
distribution for application execution times when
make mapping decisions [2, 27]. Deterministic
modeling uses a fixed (or expected) value [17], e.g.,
the average of ten previous executions of an
application.
 Task heterogeneity: For each machine exist
different tasks with different properties (e.g.,
probability distribution) which make the execution
times different.
 Multiple versions: the applications have multiple
versions that could be executed For example, an
application that requires an FFT might be able to
perform the FFT with either of two different
procedures that have different precisions, execution
times, and resource requirements.
 Priorities: Priorities are generally assigned by the
user (within some allowed range), but the relative
weight given to each priority are usually determined
by another party (e.g., a system administrator).
Priorities and their relative weightings are required if
the mapping strategy is preemptive.
 Task profile: Task profiling specifies the types of
computations occurring in an application based on
the code for the task (or subtask) and the data to be
processed [20, 34]. This information may be used by
the mapping heuristic, in conjunction with analytical
benchmarking to estimate task (or subtask) execution
time.
 Temporal distribution: It is mean static
applications (the complete set of tasks to be mapped
known a priori), dynamic applications (the tasks
arrive in a real-time, non-deterministic manner), or it
can be a combination of the two

3.2 Characterization

 The predictions of behavior in applications are
based on past observations. These observations can
be obtained using simulations or in real time. The
survey in real time has not advantage because real
applications of interest might run for long periods of
time and it is not feasible to perform a statistically
significant number of experiments. In addition, using
real resources makes it difficult to explore a wide
variety of resource configurations. Finally, variations
in resource load over time make it difficult to obtain
repeatable results. Simulation is then the most viable

approach to effectively evaluate scheduling
algorithms.
 Currently a few simulation packages are available
[18, 38, 12, 39], but they are not targeted to the
simulation of distributed applications for the purpose
of evaluating scheduling algorithms. These tools are
often very complete and sophisticated but too
complex and low-level for our purpose. Simgrid [6]
provides core functionalities that can be used to build
simulators for the study of application scheduling in
distributed environments. In this survey we consider
Simgrid to perform simulations. In order to make
simulations, we use a mapping algorithm which
consider heterogeneity of processors and network.

3.3 Statistical method
 In order to obtain the characterizations of
applications using past observations we propose use
statistical methods. This approach offers a number of
advantages. First, a statistical method can
compensate for many different factors, without
requiring a distinct model for each of the different
machine architectures. Second, statistical estimates
will improve with time, as the number of previous
observations increases. Finally, statistical schemes
can be made to be computationally efficient, making
them practical for use at run time. One potential
criticism of statistical schemes is the need of a large
number of past observations to obtain accurate
estimates.
 One important method to consider is
nonparametric regression. Nonparametric regression
has the advantage of being able to estimate equation
of model, as a function of several parameters, without
any knowledge of the function itself. Since we make
no assumptions on the functional form, this
prediction scheme does not require any knowledge of
either the task of the target architecture, making it
applicable in a very general sense.
 Most of the previous work for heterogeneous
distributed computing which mixing past
observations and statistical methods are generally for
execution time estimation. The SmartNET
heterogeneous scheduling tool offers statistical
execution time estimation technique, but no details of
its implementation have yet been published [25].
Iverson [23, 24] present nonparametric regression
technique, for execution time estimation in
heterogeneous distributing computing. Other authors
[21, 36] use techniques based on Bayesian decision
theory, but these techniques are difficult to
implement.
 For prediction behavior of applications defined
in this paper, we consider a function p(δ) where δ is a
vector of parameters of the application such that size,

etc. While the estimation algorithm does not know
any details about the functional form of p(δ), it does
have a set of n previous observations of applications

n
iiiy 1)},)({(=δλ , where iy)(λ is the prediction

behavior of application for the vector δ and λ is a
function that depends of time, bandwidth, etc. These
observations are assumed to contain some amount of
random error ε, such that

iii py εδλ +=)()(

Thus, the goal of the problem is, given the function
p(δ), to obtain an estimate of the characteristics of
this application, using the set of previous
observations.

3.4 Integration

 The scheme will operate in the following manner.
A set of previous observations is maintained by the
algorithm. Using this set of observations, the
prediction behavior of application in each potential
machine can be estimated, and then matching and
scheduling algorithm can use these estimates to make
a realistic and efficient mapping decision. After the
task of the application is complete, the new
parameters are added to the set of observations, to be
used to improve future predictions. By storing past
observations, the estimation algorithm is able to
improve its estimates over time.

4 Conclusions and future work

 In this paper, we have presented a review of
different techniques used to perform matching and
scheduling in heterogeneous distributed systems. We
propose a characterization of specific applications
with the objective to obtain a forecast behavior. The
predictions of behavior in applications are made base
on a combination of observations, simulation and
modeling through statistical methods. The result can
be utilized to generate new mapping techniques more
efficient and realistic. Our future work will be
concerned with the development of mapping
algorithms based on the new approach. We envision a
set of mapping strategies and tools to reach peak
performance of applications on heterogeneous
distributed systems.

Acknowledgement

This work was supported by the UPRM-NSF
PRECISE Project (NSF-EIA 99-77071) and the

UPRM PhD program in Computing and Information
Science and Engineering.

 References

[1] I. Ahmad, K. Kwok and M. Wu. Analysis,

evaluation, and comparison of algorithms for
scheduling task graphs on parallel processors.
IEEE Transactions on Parallel and Distributed
Systems, 1996.

[2] R. Armstrong, D. Hensgen, and T. Kidd, The
relative performance of various mapping
algorithms is independent of sizable variances in
run-time predictions," 7th Heterogeneous
Computing Workshop (HCW '98), Mar. 1998.

 [3] D. Bernstein, M. Rodeh, and I. Gertner. On the
complexity of scheduling problems for
parallel/pipelined machines. IEEE Transactions
on computers, C-38(9):1308-1313, September
1989.

[4] T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, M.
Maheswaran, A. I. Reuther, J. P. Robertson,
M.D. Theys, and B. Yao, “A Taxonomy for
Describing Matching and Scheduling Heuristics
for Mixed-Machine Heterogeneous Computing
Systems,” 17th IEEE Symposium on Reliable
Distributed Systems, Oct. 1998, pp. 330-335.

[5] T. Braun, H. Sieguel and A. Maciejewski. Static
mapping heuristic for task with dependencies,
priorities, deadlines and multiple versions in
heterogeneous environments. IEEE proceedings
of the international parallel and distributed
processing symposium 1530-2075. Feb. 2002.

[6] H. Casanova. Simgrid: a toolkit for the simulati-
on of application scheduling. Computer Science
Department University of California, San Diego,
Sept. 2001.

[7] T. L. Casavant and J. G. Kuhl. A taxonomy of
scheduling in general purpose distributed
computing systems. IEEE Transactions on
Software Engineering, 14(2):42-45, February
1988.

[8] B. Cirou, and E. Jeannot. Triplet: a Clustering
Scheduling Algorithm for Heterogeneous
Systems. IEEE Symposium on Reliable
Distributed Systems, Oct. 2001.

[9] E. G. Coffman, Jr., ed., Computer and Job-Shop
Scheduling Theory, John Wiley & Sons, New
York, NY, 1976.

[10] V. Chaudhary, and J. K. Aggarwal. A gene-
ralized scheme for mapping parallel algorithms.
IEEE Transactions on Parallel and Distributed
Systems, 1998.

[11] S. Chen, L. Xiao and X. Zhang. Adaptive and
virtual reconfigurations for effective dynamic job
scheduling in cluster systems. Proceedings of the
22nd International Conference on Dist. Comp.
Systems. March 2002.

[12] J. Davis, M. Goel, C. Hylands, B. Kienhuis, E.
Lee, J. Liu, X. Liu, L. Muliadi, S. Neuendorffer,
J. Reekie, N. Smyth, J. Tsay, and Y. Xiong.
Overview of the Ptolemy Project. Technical
report ERL Technical report UCB/ERL No
M99/37, Dep. EECS, University of California,
Berkeley, July 1999.

 [13] V. Dixit-Radiya and D. Panda. Clustering and
Intra-Processor scheduling for explicitly parallel
programs on distributed-memory systems. IEEE
Transactions on Parallel and Distributed
Systems, Agust 1994.

[14] K. Efe. Heuristic models of task assignment
scheduling in distributed systems. Computer,
15:50-56, June 1988.

[15] P. H. Enslow Jr. What is a “distributed” data
processing system? Computer, 11(1):13-21,
January 1978.

[16] Ian Foster and Carl Kesselman. The Grid:
BluePrint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, 1998

[17] R. F. Freund, M. Gherrity, S. Ambrosius, M.
Campbell, M. Halderman, D. Hensgen, E. Keith,
T. Kidd, M. Kussow, J. D. Lima, F. Mirabile, L.
Moore, B. Rust, and H. J. Siegel, Scheduling
resources in multiuser, heterogeneous,
computing environments with SmartNet," 7th
Heterogeneous Computing Workshop (HCW
'98), Mar. 1998.

[18] P. Fishwick. Simulation Model Design and
Execution: Building Digital Worlds. Prentice
Hall, 1994.

[19] A. Gabrielian and D. B. Tyler. Optimal object
allocation in distributed computer systems. In
Proc. Int. Con. on Distributed Computer
Systems, pages 84-95, May 1984.

[20] A. Ghafoor and J. Yang, “Distributed he-
terogeneous supercomputing management
system,” IEEE Computer, Vol. 26, No. 6, Jun.
1993.

[21] C. Hou and K. Shin. Load sharing with
consideration of future task arrivals in
heterogeneous distributed real time systems.
IEEE Transactions on Computer,43(9);1076-90,
Sept. 1994.

[22] O. H Ibarra and C. E. Kim, “Heuristic Algori-
thms for Scheduling Independent Tasks on
Nonidentical Processors,” Journal of the ACM,
vol. 24, no 2, Apr. 1977, pp. 280-289.

[23] M. Iverson and G. Follen. Run statistical
estimation of Task execution times for

heterogeneous distributing computing.
Proceedings of HPDC, May 1996.

[24] M. Iverson. Statistical prediction of Task
execution times through analytic benchmarking
for scheduling in a heterogeneous environment.
IEEE Transactions on Computer, vol 48 Nro 12,
December 1999.

[25] T. Kidd, D. Hensgen, L. Moore, R. Freund, D.
Charley, M. Halderman, and M. Janakiraman,
™Studies in the Useful Predictability of
Programs in a Distributed and Homogeneous
Environment,º The Smartnet Home Page,
http://papaya.nosc.mil:80/SmartNet/, 1995.

[26] E.L. Lawler, J.K. Lenstra, and A.H.G.R. Kan.
Recent developments in deterministic
sequencing and scheduling: a survey. In M. A.
H. Dempster et al., editor, Deterministic and
Stochastic Scheduling. D. Reidel publishing
company, 1982.

[27] Y. A. Li and J. K. Antonio, Estimating the
execution time distribution for a task graph in a
heterogeneous computing system," 6th
Heterogeneous Computing Workshop (HCW
'97), Apr. 1997.

[28] V. M. Lo. Heuristic algorithms for task
assignment in distributed systems. In Proc. Int.
Conf. on Distributed Comp. Systems, C-
37(11):1384-1397, November 1988.

[29] P. Y. R Ma, E. Y. S. Lee, and J. Tsuchiya. A
task allocation model for distributed computing
systems. IEEE Transactions on Computers, C-
31(1):41-47, January 1982.

 [30] L. M. Ni and K. Hwang. Optimal load
balancing for a multiple processor system. In
Proc. Int. Con. on Parallel Processing, pages
352-357, 1990.

[31] J. Ousterhout, D. Scelza, and P. Sindhu.
Medusa: An experiment in distributed operating
system structure. Communications ACM,
23(2):92-105, February 1980.

[32] J. Orduña and F. Duato. A new task mapping
technique for communication-aware scheduling
strategies. IEEE Transactions on Parallel and
Distributed Systems, Set. 2001.

[33] C. C. Price and S. Krishnaprasad. Software
allocation models for distributed computing
systems. In Proc. Int. Conf. on Distributed
Comp. Systems, pages 40-48, May 1984.

[34] H. J. Siegel, M. Maheswaran, and T. D. Braun,
Heterogeneous distributed computing,"
Encyclopedia of Electrical and Electronics
Engineering, J. Webster, ed., John Wiley &
Sons, New York, NY, to appear.

[35] C. C. Shen and W. H. Tsai. A graph matching
approach to optimal task assignment in
distributed computing systems using a minimax

criterion. IEEE Transactions on Computers, C-
34(3):197-203, March 1985.

[36] K. Shin and C. Hou. Design and evaluation of
effective load sharing in distributed real time
systems. IEEE Transactions Parallel and
Distributed Systemsr,5(7):704-19, July. 1994.

[37] K. Taura and A. Chien. A heuristic algorithm for
mapping communicating tasks on heterogeneous
resources IEEE Transactions on Parallel and
Distributed Systems, Set. 2000.

[38] http:/www.threadtec.com/. (Viewed September
2002).

[39] A. Terzis, K. Nikoloudakis, L. Wang, and L.
Zhang. IRL-Sim: A general-purpose packet level
network simulator. In Proceedings of the 33rd
Annual Simulation Symposium, Apr. 200. To
appear.

[40] A. M. VanTilborg and L. D. Wittie, “Wave
scheduling – Decentralized scheduling of task
forces in multicomputers,” IEEE Trans. Comp.,
vol. C-33, no 9, pp 835-844, Sept. 1984.

[41] V. Yarmolenko, J. Duato, D. k. Panda, and P.
Sadayappan. Characterization and Enhancement
of Static Mapping Heuristic for Heterogeneous
Systems. Technical report OSU-CIISRC-02/00-
TR07, Dept. of computer science, Ohio State
University, Feb. 2000.

 [42] A. Zomaya and T. Yee-Hwei. Observations on
Using Genetic Algorithms for Dynamic Load
Balancing. IEEE Transactions on Parallel and
Distributed Systems, Set. 2001.

