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Abstract 
 
The problem of mapping tasks and communications 
onto multiple machines and networks in a 
heterogeneous computing environment has been 
shown to be NP complete. Therefore, the 
development of heuristic techniques to find near-
optimal solutions is required. Many different types of 
mapping heuristics have been developed in recent 
years. However, selecting the best heuristic to use in 
any given scenario remains a difficult problem. 
Moreover, it is not possible to make a general 
mapping in a heterogeneous computing environment. 
In this paper we propose to characterize classes of 
applications with the objective of predicting their 
behavior. Using the insight provided by the 
characterization, we achieve a more realistic mapping 
for specific applications.  
 
 
1     Introduction 
     
    The steady decrease in cost and increase in 
performance of commodity workstations and 
personal computer have made it increasingly 
attractive to use clusters of such systems as compute 
servers instead of high-end parallel supercomputers 
[16]. Due to the rapid advance in performance of 
commodity computers, when such clusters are 
upgraded by addition of nodes, they become 
heterogeneous. The issue of effective mapping of 
applications onto such heterogeneous clustered 
systems is therefore of great interest. Several  
research studies have addressed this problem 
[5,42,8,32,41,1,11,10,37]. However the problem is 
NP complete [9,22], therefore, the development of 
heuristics techniques is required. Many factors make 
it difficult to select the best technique of mapping. 
These factors can be described as follows: 
 
 
 
 

 
 
1. A distributed computing environment has 

conflicting requirements [14]: (i) While 
minimizing interprocessor communication tends 
to assign the entire computation to a single 
processor, load balancing tries to distribute the 
computation evenly among the processors. (ii) 
While real-time constraints require many 
processors as possible to maximize parallel 
execution, the precedence relationships limit 
parallel execution. (iii) The saturation effect 
suggests the use of fewer processors since 
inefficiency increases with the number of 
processors. 

 
2. When one heuristic technique is presented and 

evaluated in the literature, typically, different 
assumptions are made about the underlying 
target platforms making comparisons 
problematic. Similarly, different assumptions 
about application models complicate 
comparisons. In addition, the algorithms should 
take into account characteristics of processors, 
network architecture and applications.  
Regarding applications, for example, the 
existing algorithms only consider the size 
property.  

  
     In this paper, we propose to characterize classes of 
applications with the objective of predicting their 
behavior. In order to obtain this characterization of 
applications, we consider observations and statistical 
methods. Using the insight provided by the 
characterization, we propose a more efficient and 
realistic mapping for specific applications. 
 
     The rest of the paper is organized as follows. 
Section 2 begins with the description of different 
mapping schemes and taxonomy for describing 
matching and scheduling heuristics for heterogeneous 
computing systems. Section 3 presents the 
methodology for characterizing applications and the 
use for heterogeneous distributed systems. The paper 



concludes with comments about the proposed 
strategy and its extensions in section 4.   
 
 
2   Taxonomy of Mapping 
 
   Mapping includes assigning (matching) each task to 
a machine and ordering (scheduling) the execution of 
the tasks on each machine [4]. The mapping problem 
is extremely difficult to solve and generally 
intractable [3,26]. Even the simplified subproblems 
constructed from the original mapping problem by 
imposing a variety of constraints still fall in the class 
of NP hard problems. The difficulty of solution varies 
with the inclusion or exclusion of preemption, the 
number of parallel processors, precedence 
constraints, etc.  
     We now classify the various strategies for 
multiprocessor scheduling, task mapping, and 
resource allocation under a common, uniform set of 
terminology [7]. The Figure 1 shows the structure of 
the hierarchical portion of the taxonomy. The 
strategies can be classified as being either static or 
dynamic. 
 
     Static Mapping versus Dynamic Mapping: In the 
static mapping case the entire information regarding 
the processes in the host system, as well as the 
processes involved in a job, is assumed to be 
available a priori [41,28,37,32]. On the other hand, in 
the dynamic mapping a more realistic assumption is 
used, that is very little a priori knowledge is available 
about the resource needs of a process. In the static 
case, a decision is made for a process image before it 
is ever executed, while in the dynamic case no 
decision is made until a process starts. 
    Optimal versus Suboptimal:  In the case that all 
information regarding the state of the system as well 
as the resource needs of a process are known, an 
optimal assignment can be made based on some 
criterion function [19,29,35,30]. Examples of 
optimization measures are minimizing total process 
completion time and maximizing utilization of 
resources in the systems.  
In the case that these problems are computationally 
infeasible, suboptimal solutions may be obtained 
[28,33,40]. Within the realm of suboptimal solutions 
to the mapping problem, the heuristic algorithms 
represent the category of static algorithms that make 
a realistic assumption about a priori knowledge 
concerning process and host system characteristics. 
The most distinguishing feature of heuristic 
schedulers is that they make use of special 
parameters, which affect the system in indirect ways. 
      Optimal and Suboptimal Approximate 
Techniques: Regardless a static solution is optimal or 

suboptimal approximate, there are four basic 
categories of task allocation algorithms, which can be 
used to arrive at an assignment of processes to 
processors: 

 
 

Figure 1. Taxonomy of mapping  
 
 
• Solution space enumeration and search  
• Graph theory 
• Mathematical programming 
• Queuing theory  

 
      
     Distributed Versus Nondistributed: Distributed 
mapping means that the work involved in making 
decisions should be physically distributed among the 
processors [15]. On other hand, nondistributed  
means whether the responsibility for the task of 
global dynamic scheduling physically resides in a 
single processor [31]. 
     Cooperative versus Noncooperative: Cooperative 
means that all mechanisms which involve 
cooperation between distributed components and 
Noncooperative whether the individual processors 
make decisions independent of the actions of the 
other processors   
 
     Many algorithms have been published addressing 
the problem of matching and scheduling, where 
several simplifying assumptions are common. 
Orduña [32], for example, describes a mapping 
scheme assuming all the network switches are 
attached to the same number of workstations, the 
workstations are uniprocessors, and only one process 
is mapped to each processor. These assumptions 
nevertheless determine system performance. 



     Another simplifying assumption is made in [13]. 
In this paper mapping is modeled with forward flow 
only. Programs with dynamic structures are not 
considered. Also, Ahmad and Kwok [1] compared 
several algorithms for scheduling task graphs. The 
algorithms have different assumptions: bounded and 
unbounded number of processors and clusters, task 
duplication based scheduling and arbitrary processor 
network scheduling. 
 
     In the previous discussion, most of the approaches 
focus primarily on specific mapping strategies for 
particular multiprocessor architectures. Some 
approaches intend to take advantage of hardware 
characteristics, such as the interconnection network 
of architectures. Others take advantage of 
characteristics of processors and very few papers take 
advantage of characteristics of applications. Also 
exist other approaches, such as [10] which intent to 
generalize mapping and scheduling. By large, these 
approaches assume homogeneous conditions for 
many characteristics of applications or architecture of 
hardware. Therefore, a general mapping to all 
applications and characteristics of hardware and 
network is difficult to obtain. We propose a specific 
mapping considering hardware issues in the context 
of specific applications. To achieve this, we propose 
a characterization of the applications with the 
objective to predict behavior.  
 
3  Characterization of Applications    
 
     In this section, we provide a new approach to 
mapping in heterogeneous distributed system 
considering the characterization of applications. 
 
3.1 Characteristics of Applications  
       
       The characteristics of the applications (which can 
be tasks or subtasks) can be defined as follows: 
 
     Application size: This mean if a task contains 
subtasks or not. 
     Application type: Types of applications to be 
mapped. 
     Communication patterns: This mean to the 
sources and destination subtasks for each data item to 
be transferred. 
     Data availability: The time at which input data 
needed by a subtask or output data generated by a sub 
task can be utilized varies in relation to subtask start 
and finish times: (a) is data available (to be 
forwarded) before a subtask completes, and (b) can a 
subtask begin execution before receiving all of its 
input data? As an example, a clustering non-uniform 
assumes that a subtask cannot send data to other 

waiting subtasks until it completely finishes 
executing. 
     Deadlines: the applications have deadlines. 
     Execution time model: Most mapping techniques 
require an estimate of the execution time of each 
application on each machine. The two choices most 
commonly used are probabilistic and deterministic 
modeling. Probabilistic modeling uses a probability 
distribution for application execution times when 
make mapping decisions [2, 27]. Deterministic 
modeling uses a fixed (or expected) value [17], e.g., 
the average of ten previous executions of an 
application. 
     Task heterogeneity: For each machine exist 
different tasks with different properties (e.g., 
probability distribution) which make the execution 
times different.  
     Multiple versions: the applications have multiple 
versions that could be executed For example, an 
application that requires an FFT might be able to 
perform the FFT with either of two different 
procedures that have different precisions, execution 
times, and resource requirements.  
     Priorities: Priorities are generally assigned by the 
user (within some allowed range), but the relative 
weight given to each priority are usually determined 
by another party (e.g., a system administrator). 
Priorities and their relative weightings are required if 
the mapping strategy is preemptive. 
     Task profile: Task profiling specifies the types of 
computations occurring in an application based on 
the code for the task (or subtask) and the data to be 
processed [20, 34]. This information may be used by 
the mapping heuristic, in conjunction with analytical 
benchmarking to estimate task (or subtask) execution 
time. 
     Temporal distribution: It is mean static 
applications (the complete set of tasks to be mapped 
known a priori), dynamic applications (the tasks 
arrive in a real-time, non-deterministic manner), or it 
can be a combination of the two 
 
3.2  Characterization 
        
      The predictions of behavior in applications are  
based on past observations. These observations can 
be obtained using simulations or in real time. The 
survey in real time has not advantage because real 
applications of interest might run for long periods of 
time and it is not feasible to perform a statistically 
significant number of experiments. In addition, using 
real resources makes it difficult to explore a wide 
variety of resource configurations. Finally, variations 
in resource load over time make it difficult to obtain 
repeatable results. Simulation is then the most viable 



approach to effectively evaluate scheduling 
algorithms. 
     Currently a few simulation packages are available 
[18, 38, 12, 39], but they are not targeted to the 
simulation of distributed applications for the purpose 
of evaluating scheduling algorithms.  These tools are 
often very complete and sophisticated but too 
complex and low-level for our purpose. Simgrid [6] 
provides core functionalities that can be used to build 
simulators for the study of application scheduling in 
distributed environments. In this survey we consider 
Simgrid to perform simulations. In order to make 
simulations, we use a mapping algorithm which 
consider heterogeneity of processors and network.  
 
 
3.3 Statistical method 
      In order to obtain the characterizations of 
applications using past observations we propose use 
statistical methods. This approach offers a number of 
advantages. First, a statistical method can 
compensate for many different factors, without 
requiring a distinct model for each of the different 
machine architectures. Second, statistical estimates 
will improve with time, as the number of previous 
observations increases. Finally, statistical schemes 
can be made to be computationally efficient, making 
them practical for use at run time. One potential 
criticism of statistical schemes is the need of a large 
number of past observations to obtain accurate 
estimates. 
        One important method to consider is 
nonparametric regression. Nonparametric regression 
has the advantage of being able to estimate equation 
of model, as a function of several parameters, without 
any knowledge of the function itself. Since we make 
no assumptions on the functional form, this 
prediction scheme does not require any knowledge of 
either the task of the target architecture, making it 
applicable in a very general sense. 
     Most of the previous work for heterogeneous 
distributed computing which mixing past 
observations and statistical methods are generally for 
execution time estimation. The SmartNET 
heterogeneous scheduling tool offers statistical 
execution time estimation technique, but no details of 
its implementation have yet been published [25]. 
Iverson [23, 24] present nonparametric regression 
technique, for execution time estimation in 
heterogeneous distributing computing. Other authors 
[21, 36] use techniques based on Bayesian decision 
theory, but these techniques are difficult to 
implement. 
       For prediction behavior of applications defined 
in this paper, we consider a function p(δ) where δ is a 
vector of parameters of the application such that size, 

etc. While the estimation algorithm does not know 
any details about the functional form of p(δ ), it does 
have a set of n previous observations of applications 

n
iiiy 1)},)({( =δλ , where iy )(λ   is the prediction 

behavior of application for the vector δ and λ is a 
function that depends of time, bandwidth, etc. These 
observations are assumed to contain some amount of 
random error ε, such that 
 

iii py εδλ += )()(  
 
Thus, the goal of the problem is, given the function 
p(δ), to obtain an estimate of the characteristics of 
this application, using the set of previous 
observations. 
 
3.4  Integration 
 
      The scheme will operate in the following manner. 
A set of previous observations is maintained by the 
algorithm. Using this set of observations, the 
prediction behavior of application in each potential 
machine can be estimated, and then matching and 
scheduling algorithm can use these estimates to make 
a realistic and efficient mapping decision. After the 
task of the application is complete, the new 
parameters are added to the set of observations, to be 
used to improve future predictions. By storing past 
observations, the estimation algorithm is able to 
improve its estimates over time.    
 
 
4     Conclusions and future work 
 
      In this paper, we have presented a review of 
different techniques used to perform matching and 
scheduling in heterogeneous distributed systems. We 
propose a characterization of specific applications 
with the objective to obtain a forecast behavior. The 
predictions of behavior in applications are made base 
on a combination of observations, simulation and 
modeling through statistical methods. The result can 
be utilized to generate new mapping techniques more 
efficient and realistic. Our future work will be 
concerned with the development of mapping 
algorithms based on the new approach. We envision a 
set of mapping strategies and tools to reach peak 
performance of applications on heterogeneous 
distributed systems.  
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