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Abstract

This paper discusses numerical stability of a class of non-overlapping domain decomposition
algorithms. Inherent shortcomings associated with different methods for proving stability are
pointed out. Von Neumann analysis yields only a necessary condition for stability because it
does not consider the overall effect of the boundary conditions between subdomains. Matrix
analysis produces also a necessary condition for stability since the matrices of coefficients as-
sociated with the algorithms are not symmteric. The GKSO, on the other hand, produces
necessary and sufficient conditions for stability. However, it is difficult to apply systematically
this analysis to the algorithms.

1 Introduction

Time dependent partial differential equations (PDEs) are widely used in science and engineering
as mathematical models for computational simulations. For example, the following parabolic
equation

ug =V - (aVu) + f(x,t), x€Q, t>0, (1)

with proper boundary and initial conditions, is often used to model diffusion phenomena in
heat transfer, flow in porous media, and mathematical biology.

For large-scale problems, the computation of solutions may require substantial CPU time. It is
therefore desirable to use multiprocessor parallel computers to calculate solutions. One method
widely used for solving time dependent PDEs on parallel computers is domain decomposition
[4]. It dates back to the classical Schwarz alternating algorithm with overlapping subdomains
[10, 14] for solving elliptic boundary value problems. Note that the original motivation for
using domain decomposition method is to deal with complex geometries, equations that exhibit
different behaviors in different regions of the domain, and memory restriction for solving large
scale problems.

When solving time depending PDEs with non-overlapping subdomains on parallel computers,
the domain decomposition method could either be used as a pre-conditioner for Krylov type
algorithm [2, 4], or as a means to decompose the original domain into subdomains and solve the
PDEs defined in different subdomains concurrently [3, 6]. When it is used as a preconditioner,
the relevant PDE is discretized over the entire original domain to form a large system of algebraic



equations, which is then solved by Krylov type iterative algorithms. The pre-conditioning step
and the inner products involved in the solution process often incur a significant amount of
communication cost to gather results from all processors.

On the other hand, if the original domain is decomposed into a set of non-overlapping sub-
domains, it would be ideal that the PDEs defined in different subdomains could be solved on
different processors concurrently. This often requires numerical boundary conditions at the
boundaries between subdomains. These numerical boundary conditions are not part of the
original mathematical model and the physical problem. One way to generate those numerical
boundary conditions is to use the solution values from the previous time step %, to calculate the
solutions at t,,41 [1, 11]. This is often referred to as time lagging (TL). The other way to gener-
ate numerical boundary conditions is to use an explicit algorithm to calculate the solutions at
the boundaries between subdomains, using the solutions from the previous time step, and then
solve the PDEs defined on different subdomains concurrently using an implicit method [5, 9].
This is referred to as the explicit predictor (EP) method. It was showed in [12] that the stabil-
ity and accuracy of the solution algorithm can be significantly affected by how the numerical
boundary conditions are generated.This paper is motivated by the interest in numerical sta-
bility associated with methods for generating boundary conditions between subdomains. The
general theory for the analysis of numerical interface or boundary conditions is well-established
but can be complicated to apply in practice [7].

The objective in this paper is to bring to light and discuss the problems that arise when
different methods are used for proving stability of domain decomposition algorithms. Next
section will discuss the domain decomposition strategy and specifically the EP method. The
different stability analyses including von Neumann, matrix analysis and GKSO theory will be
discussed in Section 3. A numerical experiment will be presented in Section 4, followed by the
conclusions in Section 5.

2 Domain Decomposition

For simplicity of the discussion, consider the following one-dimensional model with a constant
diffusion coefficient «

u = Qugg + f(z,t), 0<z<1l, 0<t<T,
u(0,t) =g(t), wu(l,t)=h(t), t>0, (2)
u(z,0) =1(z), 0<z<1.

The analysis here can be generalized to higher dimensional cases with variable diffusion coeffi-
cients, although the details will be much more tedious. Also, we will ignore the nonhomogeneous
term f(z,t) in (2.1) hereafter since it does not affect the result of the analysis.

The first step to solve (2.1) is to discretize the continuous spatial and temporal domains. Assume
that the spatial domain [0, 1] is discretized by a set of grid points z;,7 = 0,--- , L, uniformly
distributed with Az = z; — x;,_1 = %, and the temporal domain [0, 7] is discretized by a set of
discrete time steps t,,n =0,--- , N, with At =+¢, —t, 1 = % The numerical solution u(z;, t,)
is denoted by ;.

Also, assume that the original spatial domain €2 is decomposed into M subdomains Q, k =
1,---,M. The two end points of subdomain {2; are denoted as r;_1 and rg, respectively.



Since only two physical boundary conditions are available at the points rg and rjs, numerical
boundary conditions are needed at points rx, k =1,--- , M — 1, if the PDEs defined in different
subdomains are to be solved concurrently using an implicit algorithm.

For the EP method, the solution values of the boundaries between subdomains at the new time
level ¢, 1 are generated by an explicit method. For example, the following forward time central
space (FTCS) algorithm

aptt =l +y(up - 20l 4wl ), k=1,...,M -1, (3)
can be used to provide numerical boundary conditions at points rp, k = 1,--- , M — 1. With

these boundary conditions, (2.1) can be discretized in subdomain €, using an implicit algorithm,
such as the backward time central space (BTCS) algorithm,

n+1 _ —n+1 n+1
Upp_1+1 = Tk 1+1 +7(@ Uy __2urk—1+l +_urk 1+2)
U?+1 = ’LL + ')’( n+1 2UT~L+1 + U?ill) ] =Tk-1 + 27 sy Tk — 27 (4)
n+l n+1 n+1 n-l—l
UT‘k—l - u?"k—l + ’Y(urk—Z - 2 T‘k. 1 + U )

which is equivalent to solving a linear system of equations in each subdomain:
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A new approach based on explicit predictors and implicit correctors (EPIC) for the solution of
convection-diffusion equations was proposed in a previous paper [13]. The results demonstrated
stability of the scheme and a significant improvement in accuracy when calculating transient
solutions.

Since our goal in this paper is to illustrate the difficulties in stability analysis of these algorithms,
we can choose just one method for the discussion. We have selected the EP method because
it is only conditionally stable and one of the problems precisely is to determine the stability
condition correctly.

3 Stability Analysis

3.1 von Neumann Analysis

We have that the numerical boundary conditions between subdomains at points 75, k =
1,---,M — 1, are given by

aptt = Uy, + Y (U7r1 — 2uy, + U?kﬂ) : (6)

Tk

This provides boundary data for the equation at the point r; — 1

upt ™ =y Ay (e = 20 anth, (7)
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Figure 1: Amplification factor &, (@) for the EP algorithm: v =0.5,0.8,1.0,1.2,1.5.

which leads to

n+1 n n+l n+1 ~n+1
_ uT‘kfl _ uT‘kfl + 7(“1’%*2 2“7‘]“71 + uT‘k ) (8)
by = 22 = = -
rp—1 rp—1

Solving for &, , we have _ _
1+ 2y —ye~i0 '

£Tk- = (9)

Figure 3.1 shows the curves for the modulus of the amplification factor [&,, | for different values
of v with 0 < 6 < 2m. It can be observed that |, | < 1 for v < 1. When v > 1, the curve of
&, (0) goes outside of the unit circle. This would lead to the conclusion that the EP scheme is
only conditionally stable when v < 1.

However, it is well-known that von Neumann analysis gives us only a necessary condition for
stability. The only class of problems for which von Neumann analysis provides also sufficient
conditions is the class of initial-value problems with periodic boundary conditions. The reason
is that the analysis is based on finite Fourier modes which do not represent boundary conditions
in general. If we use the appropriate basis functions then we should obtain the necessary and
sufficient conditions for stability. Unfortunately, the problem of determining generalized basis
functions for a specific scheme may be very difficult in most cases. In addition, engineering ap-
plications are increasingly using finite volume and finite element methods based on unstructured
grids, for which Fourier stability analysis is not applicable. Thus, one must instead consider
the full discrete matrix that arise from the combined spatial and temporal discretization of the
PDEs and associated boundary conditions.

3.2 Matrix Analysis

For a general domain Q = {z;,% = 0,---,L} and M subdomains with equal number of grid
points, assuming m = ﬁ is an integer, the matrix representation of the EP algorithm can be



written as

A v T 767 w7 ntl - I 1T 767 w7 n
1 Ury y o z Ury
w A w uy 1 uz
1 Uro y o z Upy
= )
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(10)
where 0 =1 — 2, A is a matrix of order m — 2 with similar structure as that in (2.4), I is an
identity matrix of order m — 2, u,, kK =1,--- , M, represent the solution vector in the interior

of the k-th subdomain € (not including the two end points u,,_, and w,,), and the vectors
v,w,y,z are defined as

,U:{O’.“ ’0’_7}T’ w:{_’Y?Oa"' 70}T7 y:_’UTa z:—wT.
The above equation can be written in a compact form as
Cu™t! = Fu™

It is well-known that the necessary condition for stability is p(C~1F) = maz|);| < 1,5 =
1,...,L—1, where \;’s are the eigenvalues of matrix C~'F [8, 15]. Since it is usually difficult to
obtain an analytic expression of the eigenvalues for this matrix, the software package MATLAB
is used to calculate the magnitude of the largest eigenvalue.

Figure 3.2 shows the curve of p(C~!'F) vs. the value of y with L = 200 and M = 10. It can be
observed that p(C~1F) stays close to but below 1 for the value of vy between 0 and 1.5. When
7 increases beyond 1.5, p(C~'F) quickly goes above 1. Figure 3.3 shows the curve of p(C ' F)
vs. the number of subdomains M with L = 200, v = 1.2 and v = 1.8, respectively. It can be
observed that the value of p(C'~!F) does not change significantly as the number of subdomains
varies, with p(C~!'F) remaining below 1 for v = 1.2 and greater than 1 for v = 1.8.

This demonstrates that the EP method is only conditionally stable, with a necessary condition
of v < 1.5 for stability.

Note that even if the implicit BTCS algorithm, which is unconditionally stable, is used to
calculate solutions at all interior points of each subdomain, the use of an explicit predictor for
the numerical boundary conditions at the points rx, £k =1,--- , M — 1, between the subdomains
makes the final algorithm only conditionally stable. This is true even if the explicit predictor
is used for only one point with two subdomains.

Since the solutions at the points r; are calculated using an explicit FTCS algorithm, one might
think that the stability of the final algorithm is governed by the stability condition of the FTCS
algorithm. This, however, would lead to a more restrictive condition of vy < % [5], as opposed
to the condition v < % obtained using matrix analysis.

A numerical scheme ™' = Au"™ with A symmetric is stable with respect to the Euclidean
norm if and only if p(A) < 1. It follows from the fact that for symmetric matrices p(A4) = [|A42.
Indeed, it can be proved that for any matrix norm p(A) < ||A||. Since the matrix C~1F is
nonsymmetric, we can not guarantee that the condition vy < % is also sufficient condition. How-
ever, extensive numerical experiments have demonstrated that it is also sufficient to maintain
stability [13].



Figure 2: Spectral radius p vs. v = %: EP method, L =200, M = 10.

3.3 GKSO Theory

While the standard Fourier analysis is based on a particular value of ¢, the GKSO analysis
consists of summing over all n values. Thus, stability is proved for all £ > 0 as well as the given
spatial region. GKSO analysis investigates the existence of separable normal modes of the form

uy = Z"E, (11)

The form of the solution is very similar to the assumed Fourier modes, except that it is com-
patible with the discrete Laplace transform. The discretization is unstable if the difference
equation admits such solution for which |z| > 1 allowing exponential growth in time.

The difference equation at the boundary and adjacent points are given by

n+1 _ n n+1 n+1 n+1

ukal - uT‘kfl + 7{“7‘]672 - 2“1"]971 + uT‘k )
n+1 __ n n n n

U’T‘k - U’T‘k + ’Y{UT‘kfl - 2uT‘k + uT‘k+1}’ (12)
n+1 _ n n+1 n+1 n+1

uTk+1 - uT‘k‘}'l + ’Y{U’T‘k - 2urk+1 + uTk+2}'

Applying discrete Laplace transform, we have

A=+ (1+2y) — v} =1,
z=14+{621 24643, (13)
A=+ (1 +2y) — 96} =1

As a consequence,

—14 2+ 22y — (1 — 22 — day + 22 + 42%)1/?

57 = 22’}/ ) (14)

—1 42+ 22y + (1 — 22 — day + 22 + 42%)1/?
22y '
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Figure 3: Spectral radius p vs. number of subdomains M: EP method, L = 200, v = 1.2 and
1.8.

Substituting into the second equation of (3.8) we obtain

_ Ltz 2y 4 (2y - D1 22 — ey +2° — 42Py)?

, 16
¢ —1+ 24227 — (1 — 22 — 42y + 22 + 4227)1/2 (16)
and solving for z we have
3 1
=2 — —(1+167)Y2 17
=t =S+ 16) (17)
Hence, if v > % then |z| > 1, and consequently the scheme is unstable.
4 Numerical Experiments
Consider the following equation
ou  0*u 9
— =——12 Q=(0,1 te|0,1 18
8t 8x2 ‘,I:’ ‘II;E (’)? E[’]’ ( )

with the initial and boundary conditions
u*(z,0) = sinwz + 2%, w(0,6) =0, wu(l,t) =1,

and the exact solution u*(z,t) = e ™tsinmz + 2. The FTCS scheme is used as predictor and
the BTCS scheme is used to solve the subdomains.

Table 4.1 contains results from the EP method for solving (4.1) with different values for v =
AA;T Based on the spectral analysis in Section 3, it is known that the necessary condition for
maintaining stability of the EP method is v < 1.5. The numerical results demonstrate that the
condition is also sufficient for stability. For the cases of v = 1.0 and v = 1.5, accurate numerical
results were obtained. But for the case of v = 1.6, the errors grow explosively as the grid is

being refined.



Table 1: Maximum errors: EP method, M = 2

| Az | y=10,T=01 [y=15T=015 |y=16,T=0.16 |
0.1000 0.1389E-01 0.2555E-01 0.3684E-01
0.0500 0.4545E-02 0.6433E-02 0.1829E-01
0.0250 0.1277E-02 0.1699E-02 0.6959E+01
0.0100 0.2180E-03 0.2853E-03 0.8121E+27
0.0050 0.5565E-04 0.7264E-04 0.3017E+125
0.0025 0.1406B-04 0.1833E-04 00

5 Conclusions

We have discussed relevant issues regarding numerical stability of a class of non-overlapping
domain decomposition algorithms. The issues presented here should be taken account for
proving stability of discretization schemes in general. In the particular case of the EP algorithm,
von Neumann analysis yields only a necessary condition for stability because it does not consider
the overall effect of the boundary conditions between subdomains. Moreover, von Neumann
analysis gives us a strong stability condition of v < 1. In fact, the stability condition of the EP
algorithm is more flexible as shown in matrix analysis where the stability condition is v < 1.5.
Since the matrix of coefficients associated with the EP algorithm is nonsymmetric, the stability
condition obtained using matrix analysis is also a necessary condition. However, numerical
experiments have shown that this condition is also sufficient for stability. In addition, it is not
possible to express the eigenvalues of the matrix of coefficients in a close form so a rigorous
analytical proof of stability can not be carried out. As a consequence, MATLAB has been used
to investigate the behavior of the spectral radius.

Finally, the GKSO analysis has become the standard for proving stability of initial-boundary-
value problems. For the EP method, the GKSO analysis has also provided a stability condition
of v < 1.5. However, we have found difficulties in applying systematically GKSO analysis to
our algorithms. For example, for the TL method z = 1 and no conclusions about stability can
be deduced from the analysis, and for the EPIC method, it is not possible to apply GKSO
analysis reasonably.
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