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ABSTRACT

This paper presents the advances in developing a dynamic scheduling technique suitable for automating digital
publishing workflows. Traditionally scheduling in digital publishing has been limited to timing criteria. The
proposed scheduling strategy takes into account contingency and priority fluctuations. The new scheduling
algorithm, referred to as QB-MUF, gives high priority to jobs with low probability of failing according to artifact
recognition and workflow modeling critera. The experimental results show the suitability and efficiency of the
scheduling strategy.
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1. INTRODUCTION

Digital publishing permits the linking of printing presses to computers, thereby bypassing the need for film and/or
plate. As a result digital publishing offers the potential to raise the quality level for short-run printing, and enables
the printing of documents that are highly variable in data content and layout. However, the realization of this
potential has, to date, been seriously hampered by a number of difficulties. These include the problem of getting
the document to print correctly without artifacts on the press and the difficulty of managing the increasingly
complex workflow that results from shorter run jobs that must be completed in less time. Thus, digital publishing
not only opens up new business but also requires new business models which lead to new workflow designs. The
fact that information remains digital from the design stage all the way to printing leads to potential automation
of processes that in traditional workshops are still manually executed. The typical stages in a digital publishing
workflow are summarized in Table 1.

In this paper we discuss the advances in developing a dynamic scheduling technique suitable for automating
digital publishing workflows. Traditionally scheduling in digital publishing has been limited to timing criteria.
From our point of view, the scheduling process in digital publishing needs a new approach based on metrics
targeting quality of service. In order to achieve such a scheduling methodology we have concentrated our research
efforts in developing a scheduling algorithm that takes into account contingency (unexpected events) and priority
fluctuations (changes in job priorities). Such a scheduling algorithm is a modification of the Maximum Urgent
First2 (MUF) algorithm. The new algorithm, referred to as QB-MUF, gives high priority to jobs with low
probability of failing according to criteria defined in artifact recognition and workflow modeling and allows
diverse scheduling policies.

The structure of this paper is as follows. Section 2 discusses the formulation of the scheduling problem in
Digital Publishing and defines the scheduling strategy based on a new urgency criteria. Section 3 presents the
experimental results. Section 4 discusses the related work. Finally, section 5 draws conclusions and future work.
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Table 1. Digital Publishing Workflow Stages

Stage Description
Pre-flight Check if the digital document has all the elements requited to perform well in the

production workflow. These elements include page file format, image resolution, font
types, safety margins, mismatched colors.

Trapping Overlap colors to compensate press registration. Register is the accurate positioning
of two or more colors of ink in a printed sheet.

Imposition Arrangement of individual pages on a press sheet, so that when it is folded and
trimmed, the pages are in the correct orientation and order.

Proofing Check an output before printed. Conventional: film-based; Soft proof: calibrated
monitor; and digital proof (digital proofing printer).

Ripping It decodes PostScript, creates an intermediate list of objects and instructions, and
finally converts graphic elements into bitmaps for rendering on an output device.

2. A DYNAMIC SCHEDULING FRAMEWORK

Scheduling deals with the allocation of resources to tasks over time.3 Tasks and resources can take different
forms depending on the specific problem domain. From the Digital Publishing perspective, it is possible to
identify printing PDF jobs as tasks, and the possible processes to execute over a job as resources.

The scheduling problem can be formulated as an optimization problem:

Minimize

n∑

j=1

wjCj (1)

for a given set of tasks {αj}n
j=1, where wj is a weighted factor and Cj is a metric for each task αj , 1 ≤ j ≤ n.

The meaning of the objective function can be changed according to the specific problem domain. For example,
the optimization problem can be the minimization of the aggregated completion time of a number of jobs, each
pondered with a priority factor.

There exists a variety of scheduling models which adopt both deterministic and non-deterministic formula-
tions. These models include single machine,4, 5 parallel machine,6, 7 and shop scheduling models.8–12 Single
machine model is the simplest type of scheduling models and a special case of all other environments. It is often
found in practice when there is only one service point or a single stage. Algorithms developed for single machine
models provide a basis for design of exact algorithms and heuristics for more complicated machine environments.
Basic single machine models with regular objective functions are relatively simple and solvable via simple priority
rules. More advanced single machine models deal with non-regular and/or multiple objective functions. These
models are either solvable in polynomial time through dynamic programming or using polynomial time approx-
imation schemes. A generalization of the class of single machine models is the type of parallel machine models.
In parallel machine models a job requires a simple operation and may be processed on any of the m machines
or on any one that belongs to a given subset of machines. The class of shop scheduling models comprises the
open shop, flow shop and job shop models. In an open shop model, the operations of a job can be performed in
any order. In a job shop, they must be processed in a specific job-dependent order. A flow shop is a special case
of job shop in which each job has exactly m operations, one per machine, and the order in which they must be
processed is same for all the jobs. Shop models are strongly NP-hard in their most general form. For the flow
shop model, the case when there are more than two machines is strongly NP-hard, although the two machine
version is polynomial solvable.

Production environments, such as print shops, are subject to many sources of uncertainty. Stochastic mod-
els13, 14 have been proposed as an alternative to model random features, such as job processing times, by specifying
their probability distributions. Stochastic scheduling models, especially with exponential processing time, often



contain more structure than their deterministic counterparts. Consequently, models that are NP-hard in a de-
terministic setting often allow a simple priority policy to be optimal in a stochastic setting. In digital publishing,
scheduling is not merely an activity that ensures on-time delivery, but a scientific tool that ultimately impacts
print shop’s profitability, customer satisfaction and competitiveness. Consequently, a major driving force for this
research is the need of incorporating dynamicity into the scheduling process for digital publishing environments.

2.1. A Digital Publishing Scheduling Model

When a Job arrives to the Digital Publishing workflow, the first step is to extract static meta-data from the
job and customer information to map it into a characterized job that can be managed by the scheduler system.
These meta-data include an ID, the deadline of the job, levels of required quality, importance of the client
and required resources from the system. The second step consists in determining other parameters such as the
state of the job and latency according to the spare capabilities of the required resources. After a job path is
defined based on the relevance of the job and the spare capabilities of the system, the workflow engine can move
it from one resource to another to execute the required processes. Each resource/stage of the path releases
meta-data that help calculate the spare capability of the system and a measure of probability of error for the
next stages. Each resource/stage of the system has a local scheduler managing its own schedule into each stage
according to expected and unexpected events presented at the system. Defining a model implies describing each
component identified as part of the digital publishing workflow. The following sub-sections describe Job, Process
and Resource in Digital Publishing scheduling.

2.1.1. Job

For our Digital Publishing model, a job is defined as an incoming PDF§ file that requires the execution of a
sequence of processes residents in the stages of the Digital Publishing workflow. Jobs are considered aperiodic,
meaning job arrivals are not known a priori. Each Job has particular static parameters that describe it. These
parameters are job arrival time (Jai), job deadline (Jdi), and job relevance (Jri). Also there exist dynamic
parameters which are calculated in real time according to the behavior of the system. These dynamic parameters
are job latency (Jlati) and job laxity (Jlaxi). Job latency is the time required to complete a job. Job laxity is
the difference between the job deadline and job latency at a specific time.

2.1.2. Process

A process can be defined as an action performed over a job. A job with a defined path requires, commonly in a
specific order the realization of specific processes. Examples of processes in Digital Publishing are those described
in Table 1. Processes are related to resources in the system, each resource can performs a specific process over
a job. Furthermore, the system may have a heterogeneous sets of resources serving an unique process but on
different levels. An example of this is a set of two different preflight tools, offering different levels of artifact
recognition services.

2.1.3. Resource

A resource is an entity capable of executing a process over a job. A resource may be a software tool, an expert
or a machine performing a process over a job. There exist different kinds of entities that can execute similar
processes but with different specifications. An example in Digital Publishing is different preflight tools that may
execute the preflight process but with different quality of outcomes.

Resources and processes can be formally defined as:

R = {rjkj} ∀ j = 1, ..., m ∧ kj = 1, ..., nj ,

where m is the number of processes in the system and nj corresponds to the number of available resources to
perform the process Pj . In this way, rjkj is an identifier of each autonomous resource that can execute the
process Pj . The different number of elements in each heterogeneous set of resources that can execute the process
Pj may be represented by the variation of kj between 1 and nj where nj is different for each process Pj . On the

§Adobe Portable Document Format (PDF) is an open file format specification accepted as standard today by most of
print-shops.



other hand, the resource property that affects the behavior of the system and the outcomes of the scheduling
process is the load of the resource (Rljkj

). This is a measure that shows the load of the resource at specific time.
The load of each resource can be managed by the scheduler in the process of generating a schedule for each job
that require the resource.

2.2. A New Urgency Criteria

Our scheduling strategy focuses on providing high priority to jobs with low probability of failing. To achieve
this an urgency criteria equation is introduced to account for relevance, laxities and probability of failures of
incoming jobs. The proposed urgency criteria is based on one static parameter and two dynamic parameters
(See Figure 1). These parameters are defined as follows.

1. Criticity (Relevance). This static factor is initially established by the user according to experience and/or
customer importance. Criticity values range between 0 and 100.

2. QoS (Quality of Service). Scheduling involves matching of job needs with resource availability and capability
and addressing the concern of the quality of the match. Different QoS metrics can be defined. In our Digital
Publishing scheduling strategy QoS is defined by the probability of job success.

3. Laxity. This dynamic factor is defined as

Laxity = Jd− (t + Jlat),

where Jd is the Job deadline, t is the actual time of calculation, and Jl is the expected latency of the Job.

Laxity as defined above is not bounded and may conduct to unrealistic urgency criteria values. One way to
compensate this is to define a modulator factor K (units of time). Using this modulator value, the Laxity
factor is defined as follows.

LaxityF =
{

(K/Laxity) ∗ C if Laxity > 0 and Laxity ≥ K
C + (1− (Laxity/K)) ∗ (100− C) if Laxity > 0 Laxity < K

(2)

where C is a constant that defines the maximum value (between 0 and 100) of LaxityF when Laxity ≥ K
and the minimum value of LaxityF when Laxity < K. In the case that Laxity < 0, a degradation
of quality of service on delivery time for a job will be permitted. Thereby a new deadline Jd must be
generated but taking into account the probability of success of the job. The new Jd is calculated as
Jd = timenow +(f(Jlat)∗MF ). f(Jlat) is a function of job latency. The multiply factor MF is calculated
according to the QoS of the job as follows.

MF =





0.5 if QoS ≥ 80
0.7 if 60 ≥ QoS < 80
0.8 if QoS < 60

(3)

The resultant urgency criteria is defined as

Urgency = Criticity ∗W1 + QoS ∗W2 + LaxityF ∗W3

Where
3∑

i=1

Wi = 1 and , Wi > 0 ∀ i



Figure 1. Urgency Criteria

2.3. The QB-MUF Algorithm

The QB-MUF algorithm iteratively assigns jobs to resources by considering resource availability and job urgency
factors. If there are not resources available to process a job, the job is sent to a queue. The urgency criteria
of the jobs in the queue are updated with certain periodicity to assure the flow of jobs with high probability of
success. The general algorithm can be viewed as follows

While (There are jobs to schedule)
if (There are available resources)

for each job i to schedule
calculate job urgency;
allocate job;

end for
else

if (Queue.length >0 )
update urgency factor

end if
insert ordered job to the queue

end if
end while

2.4. Framework Architecture

The proposed urgency criteria and scheduling algorithm are embedded into a dynamic scheduling framework. The
main goal of this framework is to provide a reusable infrastructure to design and evaluate scheduling strategies.
An important feature is that the framework has the flexibility to be used in production environments other than
digital publishing. The architecture of the framework is shown in Figure 2.

The Resource Manager gets the resource load information from a profiler placed inside of each stage. The
profiler also maintains a forecasted load and calculates a tuning load. Such a tuning load is calculated from the
real load and the forecasted load. The Global Scheduler uses the information gathered by the Resource Manager
and static job information to generate scheduling events. A Job Monitor interacts with the Exchange Dispatcher
and the Resource Manager to verify that the estimated conditions for scheduling are appropriate. If everything
goes fine, the Dispatcher sends the job to its next step through the Workflow Engine. On the other hand, in
the case of a failure, a contingency or a change in the schedule conditions occurs, the Dispatcher has to redirect
the job according to predefined policies to manage exceptions. To reduce system overload, Local Schedulers are
implemented at each stage to deal with local allocation of jobs over available resources.

3. EXPERIMENTAL RESULTS

We use GridSim15 as simulation tool to implement and evaluate the QB-MUF algorithm. GridSim is a Java-
based discrete-event grid simulation package, which allows modeling and simulation of entities in parallel and
distributed computing systems. We took advantage of the GridSim capability for implementing new scheduling
policies to deploy our QB-MUF algorithm and evaluate its performance.



Figure 2. Framework Architecture

We assume that stages in a DP workflow provide useful information that can be used to forecast occurrence of
faults and probability of failure of jobs at future stages. In this paper we focus our experiments on the preflight
stage. A study over a variety of PDF documents analyzed by different preflighting tools was conducted to identify
common faults in printing documents. According to this study, the mean probability of faults related to fonts
not embedded is 67% and the mean probability of faults related to a wrong color base is 38%. This information
is used to generate a flow of jobs with probability of faults around this values. Since the events are independent
there may be a probability of having two faults in the same document.

Throughout the experimentation we compare the behavior of our QB-MUF algorithm with respect to two
other scheduling approaches: The Minimum Laxity First, denoted as Laxity, and the well known First In First
Out (FIFO) scheduling algorithm. Two metrics were observed throughout the experimentation. First, the
number of successful jobs delivered while times were running. Second, the mean waiting time of successful
delivered jobs for each scheduling algorithm. The whole set of experiments ran under the same conditions,
except in those explicitly mentioned cases. The processing rate of preflighting resources is set to 10bytes/sec
and job sizes are set to 80Mb± 70% according the job success probability.

The first set of graphics (Figures 3, 4 and 5) shows the behavior of the three scheduling algorithms, measuring
the number of successfully jobs delivered each 250 units of time. Figure 3 shows the results for a total of 100
jobs. Figure 4 shows the results the same number of jobs but with an increased arrival rate of jobs. Figure 5
shows the results for a total of 200 jobs. We have conducted more experiments and similar results are obtained
by increasing the number of jobs or the arrival rate. The QB-MUF algorithm outperforms both the Laxity
and FIFO algorithms. We point out that for the experiments illustrated here the advantage of the QB-MUF
algorithm is more evident around 9,000 units of time. This is because QB-MUF gives more importance to those
jobs that have god expectations of finishing successfully.

The second set of graphics (Figures 6, 7 and 8) shows the mean of the waiting time for successful jobs using
the three scheduling algorithms. The mean processing time is defined as the average of the time that a job has
to wait since it was received until its start processing. Results show a reduction of waiting processing time of
the QB-MUF over laxity and FIFO approaches.

4. RELATED WORK

There exists a number of commercial digital printing products that provide job tracking and scheduling capa-
bilities including Production Manager from Hewlett-Packard, Lean Document Production (LDP) from Xerox,
Print Shop Pro Manager from EDU, Pinnacle from Parsec, and Electronic Planning Board (EPB) from Pace
Systems Group, among many others. To the best of our knowledge the only product that provides truly dy-
namic scheduling capabilities is PrintFlow from EFI. PrintFlow was developed around the Theory of Constraints



Figure 3. Number of successful jobs delivered; jobs=100; arrival rate=0.35

Figure 4. Number of successful jobs delivered; jobs=100; arrival rate=0.75



Figure 5. Number of successful jobs delivered; jobs=200; arrival rate=0.35

Figure 6. Mean waiting time; jobs=100; arrival rate=0.35



Figure 7. Mean waiting time; jobs=100; arrival rate=0.75

Figure 8. Mean waiting time; jobs=200; arrival rate=0.35



(ToC)16 and was adapted to fit the printing industry. It defines printing as a manufacturing operation comprising
interdependent links where only a few constraints control the throughput, on-time delivery and cost of the entire
printing operation. We believe our approach, which diverges from the ToC approach, provides a more realistic
scenario since it considers workflow priority fluctuations and contingency is a simplified formulation.

Stewart et. al.2, 17, 18 proposed the Maximum Urgency First (MUF) algorithm as a flexible scheduler to
support changing behaviors in sensor-based control systems. MUF gives to each job an urgency factor defined
as a combination of two fixed priorities (criticality and user priority) and a dynamic priority (laxity). MUF
combines the advantages of the Earliest Deadline First (EDF) and Minimum Laxity First (MLF) algorithms.
EDF uses the deadline of a job as its priority. The job with the earliest deadline has the highest priority to be
executed. MLF assigns a laxity to each job and selects the job with the minimum laxity to execute next. The
difference between EDF and MLF is that MLF considers the execution time of a job, while EDF does not do.
Kalogeraki et. al.19 proposed a dynamic scheduling algorithm that monitors the computation times and resource
requirements of a job to determine a feasible schedule of method invocations on processors. The schedule is
driven by the laxities and the priority of the job. Ligang et. al.20 proposed a dynamic framework with local
and global schedulers based on the EDF criteria. In this approach jobs are rejected if their deadlines cannot be
met under the condition of still guaranteeing the requirements of existing jobs. Zolfaghari et. al.21 proposed
an improvement for the MLF algorithm. Our approach is a departure from the above work providing a new
formulation of the urgency criteria that includes information related to the relevance and laxities of the jobs as
well as the probability of failure of jobs. The later factor is defined as a QoS metric and represents the major
difference of our approach.

Hartmann et. al.22 presented framework for data scheduling in packet-based wireless systems. This approach
is based on the assumption that each user is characterized by a set of QoS requirements as his/her flow is
accepted into the system. The authors define the residual time as a generalized measure for the urgency of the
next packets over the flow. This residual time may be interpreted as a kind of laxity measure. Although the
authors deal with QoS, the urgency of each packet is calculated base on the packet’s residual time, leaving the
QoS merely as a guide for the assignment of packets to the adequate cell. Our proposed QB-MUF algorithm
deals with QoS parameters generated from the dynamic characteristics of each job, generating a QoS Factor that
is included together with a Laxity Factor into the urgency of a Job.

Yuan et. al.23 conveyed an analysis of the QoS properties in Manufacturing Grids (MG). A MG workflow
can be defined as the composition of manufacturing activities executed on heterogeneous and distributed manu-
facturing resources. The authors presented a scheduling algorithm based on Qos. The main difference with our
approach is that ours takes into account the dynamic internal characteristics of a job to calculate its probability
of success.

An approach that includes the concept of QoS degradable jobs was presented by Mittal et. al.24 They
propose dynamic scheduling algorithms for integrated scheduling of hard and QoS degradable jobs in real-time
multiprocessor systems. The real-time jobs are represented by two workload models, imprecise computation
and (m,k)-firm guarantee, which quantify the trade-off between schedulability and result quality. This trade-off
analysis will be introduced in our dynamic scheduling framework as an additional feature.

In summary, the main contribution of our approach compared to existing work is the introduction of a
dynamic QoS factor representing the probability of success to drive the urgency criteria of jobs. The urgency
factor is adapted to fit Digital Publishing workflows and allow the consideration of priority fluctuations and
contingency.

5. CONCLUSIONS

A new formulation of the urgency criteria that includes information related to the relevance and laxities of the
jobs as well as the probability of failure of jobs has been introduced. The new urgency criteria is used to design
a scheduling algorithm that takes into account unexpected events and priority fluctuations. The new algorithm,
referred to as QB-MUF, gives high priority to jobs with low probability of failing. Experimental results show that
the QB-MUF algorithm outperforms both the Minimum Laxity First (MLF) and the First In First Out (FIFO)
algorithms. A more complete analysis of the QB-MUF algorithm is in process on more complex scenarios.
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