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Abstract – The system presented integrates rule-based and case-based reasoning for artifact recognition in 
Digital Publishing. In Variable Data Printing (VDP) human proofing could result prohibitive since a job could 
contain millions of different instances that may contain two types of artifacts: 1) evident defects, like a text 
overflow or overlapping 2) style-dependent artifacts, subtle defects that show as inconsistencies with regard to 
the original job design. We designed a Knowledge-Based Artifact Recognition tool for document segmentation, 
layout understanding, artifact detection, and document design quality assessment. Document evaluation is 
constrained by reference to one instance of the VDP job proofed by a human expert against the remaining 
instances. Fundamental rules of document design are used in the rule-based component for document 
segmentation and layout understanding. Ambiguities in the design principles not covered by the rule-based 
system are analyzed by case-based reasoning, using the Nearest Neighbor Algorithm, where features from 
previous jobs are used to detect artifacts and inconsistencies within the document layout. We used a subset of 
XSL-FO and assembled a set of 44 document samples. The system detected all the job layout changes, while 
obtaining an overall average accuracy of 84.56%, with the highest accuracy of 92.82%, for overlapping and the 
lowest, 66.7%, for the lack-of-white-space. 

1. INTRODUCTION 
Hybrid systems make use of more than one Artificial Intelligence technique and have proven to address and 
solve problems involving imprecision, uncertainty and vagueness, high dimensionality, and the need to reconcile 
both analog and symbolic computation [4], which result too complex for conventional approaches or for single 
AI techniques. The system described in this paper integrates rule-based and case-based reasoning techniques for 
artifact recognition in Digital Publishing. 

Digital Publishing (DP) can be defined as a printing-imaging processes where the film or plate making stages are 
eliminated, and where printing or imaging takes place after the pre-press process [8]. It is an end-to-end 
workflow where customers can obtain the desired service on-demand. In other words DP allows publishing 
anything, anytime, anywhere, and by anyone, empowering individuals to control all, or most of the publishing 
processes [6]. A diagram of a DP workflow model is shown in Figure 1. 

 
Figure 1: A Digital Publishing Workflow Model 



One of the advances that DP has promoted is Variable Data Printing (VDP). The essence of VDP is job 
personalization where a document layout yields a template whose contents can be filled in with different images, 
figure illustrations, or texts for each individual reader [5]. A job of this type with multiple similar instances is 
known as a Variable Data Job (VDJ).  

Print-shops collect basic information about the customer and the job in the Intent stage, and use two processes, 
preflight and proofing, before sending any job to ripping (Raster Image Processing) and to the printer. Preflight 
checks that the digital document contains all the elements required to perform well in the production workflow, 
while the proofing task is for visually inspecting a sample output for defects before printing the complete job. 
Proofing, as currently conducted by human experts to ensure the quality of every job, raises a problem when 
dealing with VDJs. If the proofing expert wants to ensure that each and every instance of a VDJ is ready for 
printing, he/she should visually inspect each one, a task that could result prohibitive or impossible to execute, 
given that a single VDJ could contain millions of different instances.  

Digital Documents may contain defects produced by missing context, wrong use of metrics (for example use 
RGB instead of CYMK as the document color space), aesthetically unpleasant context arrangement, 
infringement of page constraints, image resolution below requirements, etc. We have classified defects specific 
to VDP into of two types. On one hand we find defects that are evident, like a text overflow in a document field. 
On the other hand, more subtle defects are style inconsistencies with regard to the design of a particular VDJ. 
We refer to them as style-dependent artifacts. 

Style-dependent artifacts cannot be detected by preflight tools and require a different approach, thus, we have 
added an artifact recognition tool to the workflow, as shown in Figure 1. This tool is composed of two 
conceptual modules: The Knowledge-Based Artifact Recognition (K-BAR) and the Complementary Artifact 
Recognition (CAR). The K-BAR is designed for document segmentation, layout understanding, artifact 
detection, and document design quality assessment. The CAR is a module reserved for detecting, for example, 
JPEG compression artifacts such as blocking, ringing, and quantization artifacts. In this paper we will focus on 
the K-BAR tool. We followed three steps in our approach: studied and characterized artifacts in digital variable 
data documents, found the most suitable knowledge representation language for the characterized artifacts, and 
established the techniques and models to gather, manage, and process the knowledge used for artifact recognition 
in variable data jobs. Document quality assessment, as conducted by K-BAR, is constrained by the proofing of 
one instance of the variable data job against which the remaining instances are assessed. No assumptions or 
constraints are made regard to how to choose the instance of the VDJ for proofing. 

Fundamental rules of document design are used in the rule-based component of K-BAR which carries out the 
document segmentation and layout understanding tasks. Nevertheless, ambiguities in the design principles that 
can not be covered by a rule-based system are analyzed by case-based reasoning, using the Nearest Neighbor 
Algorithm, where particular features from previous jobs are gathered and used to detect artifacts and 
inconsistencies within the document layout design. 

This paper describes a hybrid knowledge-based system architecture capable of recognizing defects in variable 
data jobs. The document evaluation is constrained by the proofing of one instance of the variable data job against 
which the remaining instances are assessed.  Next sections describe the processes behind the K-BAR framework: 
data input specifications, VDJs file parsing, VDJs segmentation and artificial understanding processes, the 
detection of document changes or anomalies, the recognition of artifacts, and the actualization of system 
knowledge. Finally we expose some conclusions about the system. 

2. THE DIGITAL PUBLISHING AUTOMATED PREFLIGHT MODEL 
We have identified three relevant processes for an automated preflight system. Two of them already exist in the 
traditional print shop; the Intent and the Preflight. These preflight processes are responsible for capturing, 
sharing, managing, and analyzing data about clients and their variable data jobs. The third process, denoted 
Artifact Recognition Tool, nowadays is executed by human experts. These processes are described below. 

2.1 The intent module 
The intent is the first contact between the print shop and, its customers and their print jobs. This stage is 
responsible for gathering information about the type of job, its description, the expected quality of the printed 



job, the color system used by the designers and the number of instances, among others. Moreover this module 
may gather information about the client’s interests, audience, expertise, organization, etc. This information can 
be used by an automated preflight model to execute a customized analysis of the job. 

Customized analysis criteria are a fundamental part of the artifact recognition system. The analysis criteria give 
the level of tolerance the artifact recognition tool should have for anomalies found in a given job. Information 
about the client expertise and the type of job can lead to different analysis criteria. Similarly, the client’s 
organization and audience provide information that allows evaluating jobs using the same analysis criteria for 
similar organizations. Different customers and types of jobs require varying degrees of quality criteria. Some 
may need to be extremely rigorous, for example a photography magazine, while “soccer moms’ calendars” may 
need to be evaluated with more flexible criteria. This does not mean that the print shop will give a lower quality 
of service to certain customer, but that some jobs may have been designed in a way that if rigorous criteria were 
used, many irrelevant errors or artifacts would be detected or the jobs may become unaffordable for certain types 
of customers.  

2.2 The preflight process 
The preflight tool checks for missing job components, incorrect color systems, invalid file configurations or 
formats, and possible flaws given the press type and configuration. Preflight applications provide a report of 
their analysis. This report can be useful for artifact detection. The preflight results can pinpoint vulnerable areas 
inside the document, where artifacts can be found. In this way the workflow manager can send part of the job to 
the artifact recognition tool for further evaluation and not the entire job. This can help to reduce processing time, 
and have a more efficient utilization of resources. The preflight report may become a second guideline for the 
artifact recognition process, after the metadata generated in the Intent stage. 

The press is where the ripping process takes place and is a computationally expensive process. It decodes 
PostScript, creates an intermediate list of objects and instructions, and finally converts graphic elements into 
bitmaps for rendering on an output device [9]. Many job failures in digital publishing are generated in the ripping 
process. For these reasons it is necessary that the preflight application verifies some basic requirements to 
minimize the probability of failures at the ripping stage.. 

2.3 The artifact recognition tool 
Preflight applications continue to improve in performance, quality, and automation and are practically free of 
human intervention. However, the proofing stage is still executed by human experts. In the proofing stage the 
expert checks a printed output before the actual printing takes place [9]. At this stage of the research, we do not 
intend to fully automate the proofing stage; with the artifact recognition tool we desire to extend the preflight 
capabilities while maintaining a feasible level of human intervention in Variable Data Jobs, as was discussed in 
the Introduction. 

We will focus in this paper on the Knowledge-Based Artifact Recognition (K-BAR). The K-BAR is designed for 
document segmentation, layout understanding, artifact detection, and document design quality assessment. The 
section below discusses the Artifact Recognition Model used in our research.  

3. KNOWLEDGE-BASED ARTIFACT RECOGNITION MODEL 
The main purpose of the Knowledge-Based Artifact Recognition Model, showed in Figure 2, is the detection of 
defects or artifacts generated by inconsistencies in the document design or style. We refer to this type of artifacts 
as style-dependent artifacts. 

We have found three important steps to develop a successful artifact recognition system; document 
segmentation, document understanding, and artifact matching. Document segmentation is in charge of taking the 
job raw data and starting to group logically related components given the layout of the document. The document 
understanding process takes the information provided by the segmentation step and establishes logical types1 for 
the components and the groups obtained in the document segmentation. The artifact matching step deals with the 

                                                 
1 Some examples of logical types are chapter header, sections header, captions, text, image, and table. 



characterization of the inconsistencies in the document design and matching them with previously found 
inconsistencies. 

 
Figure 2: Knowledge-Based Artifact Recognition Model 

Figure 2 shows a detailed block diagram of the Knowledge-Based Artifact Recognition Tool (K-BAR). The K-
BAR tool is composed of eight principal parts: the K-BAR Tool Manager, the Input, the Job XSL-FO [3][1] 
Parser, the Page Segmentation and Analysis, the Anomaly Case Representation, the Case Matcher, the Output, 
and the Update Cases.  

3.1 K-BAR Tool Manager 
The K-BAR Tool Manager handles and supervises all the processes inside the K-BAR. This module manages the 
tasks needed to accomplish artifact detection and the interaction between tasks. It acts as an internal workflow 
engine. 

3.2 Input 
This module receives a variable data job and associated metadata needed for the analysis. The file format for 
jobs used in this research is XSL-FO (eXtensible Stylesheet Language Formatting Objects) [3][1]. This format is 
very versatile and can be used to format any type of digital information, such as web pages and xml data. This 
format contains layout information, thus simplifying the segmentation and document understanding processes. 

The Variable Data Printing (VDP) job is stored in separate files, one file for each instance of the variable data 
job. For the proof-of-concept prototype the Input module receives the directory where the files are placed, and 
then the system loads all the files and starts the analysis. As explained earlier, the Artifact Recognition Tool 
assumes that one of the instances has been evaluated and approved by a human expert. This instance is referred 
to as the approved instance. 

In addition to the directory where the VDP job files are stored, the input data contains the client type/expertise, 
job type and the audience the job is addressed to. This metadata is also provided in an XML file and, as 
explained before, plays an important role in this analysis since it is used when deciding the tolerance of the 
system to inconsistencies. 

3.3 XSL-FO Parser 
The XSL-FO Job Parser takes an XSL-FO file and extracts the geometric information of the document 
components, their properties, and represents this information in a data structure suitable for the system. Since 
XSL-FO is an XML-Based language we can search the XSL-FO nodes with Apache Xerces2’s Document Object 



Model2 (DOM) API. We used DOM to represent variable data jobs because it maintains the complete document 
tree. To extract the properties of each node, it is required to have at any given time the properties of the node’s 
parents, siblings and children. Properties can represent relations between document components or can be 
inherited from parent nodes. DOM permits us to comply with these requirements. 

Our current system uses only a small subset of XSL-FO but the parser has been designed using polymorphism to 
make it easy to add new formatting objects. In this project we are evaluating Variable Data Jobs of one page 
length and any page size. Jobs can be composed by images and text. XSL-FO can be used to setup the 
components’ size, location, alignment, and other specific properties like text typeface.  

3.4 Page Segmentation and Analysis 
The Page Segmentation and Analysis module takes the information extracted by the XSL-FO Parser to subdivide 
the document in groups of related components. It is composed of two important modules; the Geometric Analysis 
and the Design Rules. These two modules are co-dependent. The Geometric Analysis module extracts explicit 
knowledge from the components that include component position inside the page, component dimension, text 
size, text leading, text typeface, text color, page margins, percentage of white space on the page, and page 
dimension. The Geometric Analysis uses these data and data generated by the Design Rules module to flag 
document changes with respect to the approved instance. A detailed description of the Geometric Analysis is 
found in [10]. 

The Design Rules module is implemented as a rule-based expert system and uses the graphic design principles of 
repetition, proximity, alignment, similarity, and contrast [2][11][13][14][7] as the foundation for the document 
segmentation and understanding strategy. These principles together with the information provided by the 
Geometric Analysis are used to determine the relations between components which represent the designer 
knowledge implicit in the document layout. This allows the identification of elements such as headers, captions, 
footnotes, and image-caption relations. From this analysis logical units or groups of components are determined.  

The components in these units are strongly related and it is assumed that the components of equivalent units 
have the same properties. When some change in any property is found between equivalent units the module flags 
the change as an anomaly. An anomaly is an inconsistency with regard to the document design, as found in the 
approved instance, or a potential artifact. For a detailed account of the Design Rule module see [10]. 

3.5 Anomaly Case Representation 
The Anomaly Case Representation takes the analysis provided in the Page Segmentation and Analysis module to 
characterize the anomalies found. Each anomaly is represented as a case, where a case is a logical structure used 
in artificial intelligence’s case-based reasoning [12]. Cases are used to characterize past events and in this 
research represent previously defined artifacts. Each component in each of the instances of a Variable Data Job 
is associated with the corresponding component in the approved instance. When anomalies are found the 
changes between the properties of the anomalous and the approved components are characterized. Some of the 
features used to characterize the artifacts are changes in page white space, component size, component 
dimensions, distance, component relations, and logical types. 

3.6 Case Matcher 
The Case Matcher module is in charge of searching through the artifacts case base to find a match for the 
anomaly characterized in the previous process. Cases are characterized by features whose values are determined 
from the difference between the properties of the potentially defective component and the equivalent object in 
the approved instance. We use the nearest neighbor algorithm to match cases.  

We have used 21 features to represent the cases, where each feature corresponds to a axis in an 21-dimensional 
space. The anomaly-case is represented in the 21-dimensional space in the same manner artifact-cases are. The 
purpose is to measure the similarity between the anomaly-case and the artifacts in the case base by measuring the 
distance between the cases as given by the following equation: 

                                                 
2 For more information on DOM see http://xml.apache.org/xerces2-j/dom.html 
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For each case, the system computes the value of the similarity function. The case that is closest to the anomaly 
case and is below a given threshold value is considered a match. There can be times when there is no match; if 
this happens; we consider that the anomaly is not an artifact.  

The stored cases include additional features such as a severity rating and the artifact name. These features are not 
used in the case matching. Other systems can use this information to create preflight reports, with the name of 
the artifacts and a severity rating that is not related to the artifact alone, but to the arrangement and properties of 
the anomalous component too. The artifact name and the severity ratings are given by a human expert at the time 
of adding a new case to the artifact case base. In addition this information can be used by the DP’s Workflow 
Manager to make decisions about whether to send the job back to the client to fix errors or just send the job to 
the next process. 

3.7 Output 
The Output is another communication module. This module tells the DP Workflow manager when the artifact 
recognition tool has finished its analysis. This module gathers all the data generated from the detection analysis 
and can send it to the DP Workflow Manager, to other artifact recognition tools, or to a storage device. 

3.8 Update Cases 
The Update Cases module is used to add new cases to the artifact case base. This module receives an approved 
instance and a damaged instance. The module extracts the features of the damaged and approved components 
and calculates their differences. Then the human expert determines the name and severity rating of the artifact.  

4. RESULTS 
We designed 43 different document samples. We calculated the accuracy of the system in recognizing defects, 
given a set of test samples using the following equation: 

%100×=
T
Ea  (Equation 3) 

where E is the number of correct artifact detections and T is the number of artifacts that should be detected. We 
also estimated the probability of false alarms produced by the system, i.e., wrongly detecting an artifact, using 
the following equation: 

%100×=
N
Ep  (Equation 4) 

where E  is the number of events and is the number of instances or components. We trained and tested the 
system with the following types of artifacts: typeface changes, missing components, overlapping and lack of 
white space. A detailed analysis of results for each type of artifact is found in [10]. For this these tests we tried 8 

N



different weight configurations for the distance function in equation 1. The weight configurations are shown in 
Table 1. 

Table 1 - Weight configurations 

Weights Configuration 
Configuration 

Features 
1 2 3 4 5 6 7 8 

Height 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Decrement Height 2.00 2.00 2.00 1.00 1.00 1.50 1.00 2.00 

Width 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Decrement Width 2.00 2.00 2.00 1.00 1.00 1.50 1.00 2.00 

Size 1.50 1.50 1.50 1.00 1.00 1.00 1.00 1.50 

White Space 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 

Decrement White Space 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 

Above Distance 0.50 1.00 0.50 1.00 0.50 1.00 1.00 1.50 

Right Distance 0.50 1.00 0.50 1.00 0.50 1.00 1.00 1.50 

Below Distance 0.50 1.00 0.50 1.00 0.50 1.00 1.00 1.50 

Left Distance 0.50 1.00 0.50 1.00 0.50 1.00 1.00 1.50 

Margin Friendly 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Overlapping 1.00 1.00 1.00 2.00 1.50 1.50 1.00 1.00 

Type 1.50 1.50 1.50 2.00 1.50 1.00 1.00 1.50 

Expected Type 1.50 1.50 1.50 2.00 1.50 1.00 1.00 1.50 

Type Difference 2.00 2.00 2.00 2.00 1.50 1.00 1.00 1.50 

Typeface Change 2.00 2.00 2.00 2.00 1.50 1.50 1.00 2.00 

Client Expertise 0 0 0 0 0 0 0 0 

Audience Expertise 0 0 0 0 0 0 0 0 

Audience Age Group 0 0 0 0 0 0 0 0 

Audience Visual Sensitivity 0 0 0 0 0 0 0 0 
 

These configurations were established by observation. We setup a configuration, tested the system, observed 
where it failed, readjusted the weights that were related to the flaw, and re-tested the system. For example, with 
the configuration number 7 all the features have the same significance. With this configuration, for instance, the 
system performed poorly with typeface change artifacts. Consequently we increased the weight for the typeface 
change feature. This increase led the system to a better detection of such artifacts. The configurations in Table 1 
are arranged from the best performance (Configuration number 1) to the poorest performance (Configuration 
number 8). The personalized criteria features have weights equal to zero, because this functionality was not 
implemented completely in this first prototype. 
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Figure 3 - Artifact recognition accuracy 

Figure 3 shows the overall performance of the system in terms of accuracy for our test samples. We run the test 
with two thresholds, one at 85% and the other at 90%. With thresholds of 90% and 85% the system achieved 
accuracies of 81.8% and 94.3%, respectively. Both top performances were achieved by the same weight 
configuration. Notice that this configuration (Configuration number 1) has the White Space and Decrement 
White Space weights equal to zero since the segmentation module did not differentiate between foreground and 
background objects in this first implementation, which led to a reduced accuracy and increased probability of 
false alarms. The results with a threshold of 85% show a better performance than the results with a threshold of 
90%. Nevertheless the system with a threshold of 85% generated approximately double the number of false 
alarms than with a threshold of 90% (See Figure 4). 

0

10

20

30

40

50

60

70

N
um

be
r o

f F
al

se
 A

la
rm

s

1 2 3 4 5 6 7 8
Weights Configuration

False Alarms

False Alarms for T = 90% False Alarms for T = 85%  
Figure 4: False alarms for different weight configurations 

For the test run with a threshold of 85% the system generated a maximum of 68 false alarms, while with a 
threshold of 90% the false alarms decrease drastically to a maximum of 32 false alarms. These results show that 
the threshold plays an important role in obtaining a balance between the artifact recognition accuracy and the 
generation of false alarms. On one hand, lower thresholds will lead the system to a better recognition of artifacts, 
but more false alarms. On the other hand higher thresholds slightly decrease the accuracy of the system in 
detecting artifacts, but diminish drastically the generation of false alarms. 



5. CONCLUSIONS 
This paper presented a powerful tool for artifact recognition in Digital Publishing. The tool was designed as a 
hybrid knowledge-based system composed of rule-based and case-based reasoning. Rule-based techniques are 
used to code graphic design principles used to segment and understand the document contents, and extract the 
data needed to create anomaly cases. Case-based techniques are used to represent and store past knowledge 
about known artifacts, and detect artifacts in Variable Data Printing Jobs. 

The knowledge-based artifacts recognition tool is an important technology inside the Digital Publishing 
workflow. Digital Publishing is a new field in the printing industry; that demands automated artifact recognition. 
This architecture is the first step in solving a problem which had been traditionally executed by human experts 
but that in Variable Data Printing may result prohibitive or impossible. 

Some relevant contributions are encountered in this research. The architecture design provides for personalized 
analysis criteria, which gives the K-BAR a certain amount of tolerance to inconsistencies. Also, a guideline for 
style-dependent artifact recognition was established. Moreover this architecture provides a framework for 
knowledge sharing, where print shops can sell or buy artifact recognition services. Print shops can share 
discovered artifact cases, or can update their systems with additional design rules in order to improve the 
document segmentation and understanding process. The K-BAR framework is versatile, flexible, modifiable, and 
allows future knowledge sharing, knowledge reuse, task sharing, task distribution, and web integration. 
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